IN THE THEATER OF LITERATE DISASSEMBLY,

PASTOR MANUL LAPHROAIG

AND HIS MERRY BAND OF

REVERSE ENGINEERS

LIFT THE WELDED HOOD FROM

THE ENGINE THAT RUNS THE WORLD!

10:3 Exploiting Pokémon in a Super GameBoy 10:6 Reversing a Pregnancy Test
10:4 Pokéglot! 10:7 Apple || Copy Protections
10:5 Cortex MO Marionettes with SWD 10:8 Jailbreaking the Tytera MD380
Washington, District of Columbia PRGPRIHARY IHH]RM
ATION OF
Funded by Single Malt as Midnight Oil and the IRFOCOIA ING.
Tract Association of PoC||GTFO and Friends, COMPARY CORFIDENTIAL

to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

9ro camuziar. He who has eyes to read, let him read!
€0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo10.pdf. January 16, 2016.

Legal Note: The buying party agrees that Pastor Manul Laphroaig and his merry band of Reverse Engi-
neers lift the hood from the Engine That Runs the World must be copied and shared with all neighbors, as
defined by previously agreed-upon language, until the year 2104. The buying party also agrees that, at any
time during the stipulated 88 year period, the seller may legally plan and attempt to execute one (1) heist
or caper to steal back this issue of PoC||GTFO, which, if successful, would return all ownership rights to
the seller. Said heist or caper can only be undertaken by currently active clergy of the Church of the Weird
Machines and/or neighbor Dan Kaminsky, with no legal repercussions.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!-pocorgtfo10.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

http://openwall.info/wiki/people/solar/pocorgtfo

Technical Note: The polyglot file pocorgtfol10.pdf is valid as a PDF, as a ZIP file, and as an LSMV
recording of a Tool Assisted Speedrun (TAS) that exploits Pokémon Red in a Super GameBoy on a Super
NES. The result of the exploit is a chat room that plays the text of PoC||GTFO 10:3.

Run it in LSNES with the Gambatte plugin, the Japanese version of the Super Game Boy ROM and the
USA /Europe version of Pokémon Red.

‘ ./lsnes —library=gambatte/core.so

Printing Instructions: Pirate print runs of this journal are most welcome! PoC||GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11”7 x 177) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This 1s how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfolO.pdf -o pocorgtfolO-book.pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
ETEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Minister of Spargelzeit Weights and Measures FX

1 Please stand; now, please be seated.

Neighbors, please join me in reading this
eleventh release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little col-
lection of articles for ladies and gentlemen of distin-
guished ability and taste in the field of software ex-
ploitation and the worship of weird machines. This
is our eleventh release, given on paper to the fine
neighbors of Washington, D.C.

If you are missing the first ten issues, we the edi-
tors suggest pirating them from the usual locations,
or on paper from a neighbor who picked up a copy of
the first in Vegas, the second in Sao Paulo, the third
in Hamburg, the fourth or eighth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the sev-
enth from his parents’ inkjet printer, the ninth in
Montréal, or the tenth in Novi Sad or Stockholm.

Our sermon today, to be found on page 4, is a
sordid tale in the style of a Dickensian ghost story.
Pastor Laphroaig invites us to the anatomical the-
ater, where helpless tamagotchis are disassembled in
front of an audience, for FUN!

Page 7 contains a delightfully sophisticated and
reliable exploit for Pokémon Red on the Super
GameBoy, starting from a save-game glitch, then
working forward through native Z80 code execution
to native 65C816 code on the host Super NES. They
do all of this on real hardware with scripted access
to only the gamepad and the reset switch!

Keeping up our tradition of shipping in funky
file formats, this PDF is a new polyglot! Page 24
contains the details for how this PDF is also an ex-
ploit, loading Pokémon Plays Twitch in the Lsnes
emulator.

Micah Elizabeth Scott is becoming a regular con-
tributor to this journal, and we eagerly await each
of her submissions. Page 26 contains her notes on
ARM’s replacement for JTAG, called Single Wire
Debug or SWD. Driving SWD from an Arduino,
she’s able to move the target machine like a mari-
onette, scripted from literate HTML5 programming
with powerful new elements such as swd-hexedit.

When we heard that Amanda Wozniak was con-
tracted to reverse engineer a pregnancy test, but
never paid for the work, we quickly scrounged up five
Canadian loonies to buy the work as scrap. Page 32
contains her notes, and we’ll happily pay five more
loonies to the first use of this technology in a Hack-
aday marriage proposal or shotgun wedding.

IMMEDIATE
DELIVERY

Domestic & Export

DEC LSI -11
COMPONENTS
A full and complete

line with software
support available.

Mini Computer
Suppliers, nc.

25 CHATHAM ROAD
“» SUMMIT, NEW JERSEY 07901
SINCE 1973

(201) 277-6150 Telex 13-6476

On page 39, Peter Ferrie shares tricks for break-
ing the copy protection of dozens of Apple || games.
When we told Peter to keep his notes to six pages,
he laughed and dared us to find tricks worth cut-
ting from his article. Accordingly, our cutting-room
floor is empty and this article is the most complete
collection of Apple |[cracking techniques in modern
publication.

Travis Goodspeed has been playing with Dig-
ital Mobile Radio (DMR) lately, a competitor to
TETRA and P25 that is used for amateur ra-
dio, as well as trunked radio for businesses and
cash-strapped police departments. Page 76 con-
tains his notes for jailbreaking the Tytera MD380’s
bootloader, dumping all of protected memory, then
patching its application to enable promiscuous
mode. These tricks should also work on the CS700,
CS750, and a variety of other DMR handhelds.

On page 88, the last and most important page,
we pass around the collection plate. We don’t need
your dimes, but we’d love some nifty proofs of con-
cept.

2 Three Ghosts and a Little, Brown Dog

Rise, neighbors, and in the tradition of the sea-
son, let’s have a conversation with spirits of the past,
the present, and the future. We will head to a dis-
reputable place, a place of controversy where, ac-
cording to the best moral authorities, irresponsible
people do foul things for fun—a place of scandalous,
wholesale wickedness which must be stopped!

Yes, neighbors, we are heading to an anatom-
ical theater, to observe its grim denizens at their
grisly pastime. While some dissect carcasses, the
rest watch from rows of seats. They call it learn-
ing and finding things out—even though most of
what meets the eye looks like merely breaking things
apart. They say they are making things better—
even curing diseases!—though there are highly titled
authorities with certified diplomas and ethically ap-
proved methodologies who make it their business to
improve things “holistically,” without all this discon-

4
/ TN\
..‘ ‘ »
] “
2
i .
Y
5 g f {
77 4 ! e
a‘l f Vo
A i 3 (X
e\ N % - o~
A 4' < .X :
L g =
B ‘ S .&g-ﬂ,‘, 235
1 .-: 2w i\f‘
&Y &)

a sermon by Pastor Manul Laphroaig

certing breakage and cutting things off. Truly, if this
doesn’t beg the question of “How is this allowed?”
then what does?

There was a time, neighbors, when anatomy
didn’t mean trying to guess how a thing functioned
by dissecting a specimen. When Andreas Vesal-
ius published his classic human anatomy atlas with
its absolute priority of dissection for learning what
was and what was not true about the human body,
his fixation on biological disassembly was a scandal.
A proper anatomy book was understood to include
Aristotle’s four humors and a fair bit of astrology;
imagine how regressive Vesalius’ fixation on cutting
things apart to find their function must have looked!
Even when he became a royal court physician, other
learned physicians called him a barber—for everyone
knew that only barbers and sawbones used blades.
Until Victorian times, a doctor was a gentleman,

=]

.
|

T —— - :&: .’“
- N
7
(] b 1 2
Cy — 5 %
2 Satye
2

and a surgeon wasn’t. Testing the patient’s urine
was fine, but taking knives to one was simply below
a proper doctor’s station.

Vesalius’ dissection-bound atlas became an in-
stant hit, though. It turned out that going into spe-
cific techniques of dissection—place a rope here and
a pulley there—so that others would replicate it was
exactly what was needed; the venerable signs and el-
ements, on the other hand, not so much. Which did
not save Vesalius from having to undertake an emer-
gency trip to far-away lands for an obscure reason,
dying in abject poverty on the way. He died before
the first dedicated anatomical theater was built in
1594, by which time anatomy finally meant what he
had made it mean.

Ah, but that was then and now is now! The
year is 1902, and physiology is the latest scandal.
Again, moral delinquents and their supporters are
doing something loathsome: vivisection. Again,
they come up with excuses: it’s all about finding
out how things work, they say; some kind of knowl-
edge that makes them different from the uninitiated,
we hear. And even if there was knowledge to be
gained, could it really be trusted to such an imma-
ture and irresponsible crowd? Stuck to their—not
so innocent—toys and narrowly focused views, they
can’t even see the bigger ethical picture! They cater
to and are occasionally catered by truly objection-
able characters—and then have the gall to shrug it
off. They talk about education, but who in their
right mind would let them near children? Too bad
there isn’t a general law against them yet, and the
establishment is dragging its feet (or even has its
own uses for them, no doubt disgusting)—but the
stride of social progress is catching up with them,
and, with luck, there soon will be!

That was the year of high court drama, a pitched
battle between people who each believed to em-
body “social progress” against “superstition” on both
sides. It saw rallies by socialists and riots by medi-
cal students, scientists and suffragettes, British lords
and Swedish feminists—and a lot more, including
its own commemorative handkerchief merchandise.
It is immortalized in history as The Brown Dog af-
fair, one so dramatic that even the Wikipedia arti-
cle about it makes for good reading. Incidentally,
the experiment involved led to the discovery of hor-
mones.

1unzip pocorgtfol0.pdf adventure.pdf

So says the Ghost of Science Past, but we bid
him to haunt us no longer. There is another, more
cheerful Spirit to occupy our attention—the Spirit of
the Present. This is a more cheerful Spirit, involv-
ing pets only as cute pictures thereof—and lots of
them!—much to the relief of those who think neither
Schrodinger nor Pavlov would make good friends.

But this Spirit isn’t left without attention from
our moral betters. What about the children? What
about the lowlives and the criminals whom we em-
power by our so-called knowledge? What about
the bullies, the haters, the thieves, the spies, the
despots, and even—the terrorists? Would a good
thing be called ezploitation or pwnage? This new
reality is so scary to some people that their response
goes straight to nuclear; they call for a Manhattan
project, but what they really mean is “nuke it from
orbit.” To some, it’s even about evil “techno-priests”
hijacking “true social progress”—or at least it sells
their books.

Nor is this Spirit’s domain devoid of court
drama, even in our enlightened times—although
looking where we tend to fall on the scale between
Vesalius and Lord Alverstone’s Old Bailey, one be-
gins to wonder just where the light is going. No
wonder the Spirit of the Hacking Present looks some-
what frayed around the edges.

Why wait for the Specter of the Future to make
an appearance? I say, neighbors, let’s make like 1594
at the University of Padua—back when a university
used to have quite a different place in this game of
ghosts—and have our own Anatomical Theater, a
Theater of Literate Disassembly!

Just as Knuth described Adventure with Liter-
ate Programming,! we’ll weave together the disas-
sembled code of a live subject with expert explana-
tions of its deeper meaning. (Of course the best part
might well be a one liner, but we’ll save the reader
hours of effort!) We'll weave a log and a transcript
into an executable script that reproduces the cuts of
a Master Surgeon, stroke by stroke.

It is high time. We have been doing our dissec-
tions alone—with none or few to watch and learn—
long enough. Let other neighbors watch your disas-
sembly, show them your technique, and let them get
a good view and share the fun.

As the good old U. of Padua preserved its the-
ater, so shall we! And then perhaps the Specter of
the Future will smile upon us.

D) R

Stage 0: Inject
useful data by
naming the
rival RxRx’ and
resetting while
saving to get
255 Pokemon.

SUPER NINTENDD

ENTERTAINMENT SYSTEM

Stage 2: Press buttons to
write two command
packets in memory one
nibble per frame, overwrite
jump to execute.

Stage 3: Escape SGB, hang
Pokemon to stop music,
read a set number of
button presses 1 byte per
frame to write a faster

¢

Stage 4: At 3,840 bytes per
second (4 controllers of 2
bytes at 60 frames per
seconds), write a block
transfer loader into memory
and execute it.

Stage 5: Use block loader to
transfer intended SNES
payload of variable length
and execute it.

-

transfer method and
execute it. Stage 6: Reset SNES to
clear state, execute
S[]Ffﬂ N/”[[Nﬂﬂ Twitch chat interface,
read text in 5-bit or 7-bit
encodings, respond to
control packets to

display web view, make
Twitch chat say Hi, win
the Internet.

3 Pokémon Plays Twitch

by Allan Cecil (dwangoAC), Ilari Liusvaara (Ilari) and Jordan Potter (p4plus2)

SOOI TSI IS
— —

For the Awesome Games Done Quick (AGDQ)
2015 charity marathon we exploited a chain of un-
modified Nintendo game console components con-
sisting of a Pokémon Red Game Boy cartridge in a
Super Game Boy running in a Super Nintendo. We
plugged the latter into custom hardware posing as
a normal controller. In this seven-stage exploit, we
corrupted a save file to give ourselves 255 Pokémon,
swapped Pokémon, and tossed items to plant shell-
code. We committed a series of atrocities using
documented command packets and ultimately broke
into the Super Nintendo’s working RAM, where we
wrote our own chat interface to display live contents
of the Twitch chat and even a representation of a de-
faced website.

3.1 TAS’ing a Game to execute Ar-
bitrary Code

TASVideos? hosts Tool-Assisted Speedruns of
games that are created using an emulator with speed

’http://tasvideos.org
Shttp://truecontrol.org

controls such as slow motion and frame advance,
along with the ability to save and restore the state
of the game (or, rather, of the entire console) at any
time. TAS movie files consist of a list all of the but-
ton presses sent to the console every frame from the
time it is powered on until the game is beaten. It
aids our poor human reflexes, but it can do a lot
more—like arbitrary code execution!

The first run on the site to use this ability to
execute arbitrary code to jump to the credits of
a game was Masterjun’s Super Mario World run.
Later, Bortreb used arbitrary code execution in a
run of Pokémon Yellow, marking the first time ex-
ternal content was added to an existing game.

In late 2013, dwangoAC worked with Ilari and
Masterjun to present a run at AGDQ 2014 that
programmed the games Snake and Pong into Super
Mario World on a real console using a replay device
(also known as a “bot”) from True.® This was a huge
success and was covered by Ars Technica, but we
knew that we could do even more, which ultimately
led us to the project described in this article.*

3.2 The Game Choice

We started with an end-goal of executing arbi-
trary code on a Super Nintendo (SNES) using a
Super Game Boy (SGB) cartridge as the entry
point. We initially planned to use Pokémon Yel-
low based on Bortreb’s exploit in that game, but
quickly discovered that the SGB detection routine
used by Pokémon Yellow is extremely broken and
only worked on a real SGB by pure chance.® Af-
ter looking at other options, we chose to use the
Pokémon Red version, which uses a more reliable
SGB detection routine that gets us access to the
full SGB palette, a custom border, and consistent
timing benefits we’ll discuss later.® Using Pokémon

4Tt should also be noted that all recent AGDQ events have directly benefited the Prevent Cancer Foundation which was a
huge motivator for several of us who worked on this project. The block we presented this exploit in at AGDQ 2015 helped raise
over $50K and the marathon as a whole raised more than $1.5M toward cancer research, making this project a huge success on

multiple levels.

5In brief, the detection routine is extremely sensitive to how many DMG clock cycles various operations take; the emulator
is likely slightly inaccurate, which causes the detection to fail, but from looking at the behavior it seems like it “just works” on
the real hardware. This is sheer luck, and the game developers likely never even knew it was so fragile.

61f the SGB BIOS does not find the special codes in the DMG game header that indicate it’s an SGB-enabled game ($146
equal to $03), it locks up the command channel until the game is reset, rendering any SGB based exploitation impossible. See
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header for more details.

Red also has another added benefit in that the entire
game has been skillfully disassembled.”

3.3 The Emulator

When we started this project in August 2014, the
only emulator capable of emulating an SGB inside of
an SNES at a low enough level for our needs was the
BSNES emulator. Unfortunately, although BSNES
is very accurate at emulating an SNES, it doesn’t do
a very good job of emulating an SGB. The Gambatte
Dot-Matrix Game Boy (DMG) emulator is likewise
very accurate, but is unable to emulate an SGB on
its own. Ilari was able to create a hybrid emulation
core using BSNES to emulate the SNES<DMG in-
terface chip while using Gambatte for DMG emula-
tion. This was a considerable undertaking, but in
the end the emulator was very usable, albeit some-
what slow, as properly emulating the synchroniza-
tion between the SNES CPU and the DMG CPU
is a challenge. Ilari continued to provide emulator
development and scripting support throughout the
project.

3.4 The Hardware

We didn’t just want to exploit a game in the sandbox
of a console emulator and call it a Proof of Concept.
We wanted to do the job properly and create an ac-
tual exploit that would work on real hardware. Only
one member of our team (dwangoAC) had all of
the required hardware in one place, namely a SNES
console, a SGB cartridge, a copy of Pokémon Red,
and the replay device posing as a controller, also
known as a “bot.”® Because we wanted to stream
data from an attached computer, we opted to use
an older, serial-over-USB connected device, namely
True’s NES/SNES Replay Device. This choice of
hardware had a few limitations but worked out well
for the project in the end.

e

Figure 1 — The legendary TASBot

3.5 The Plan

We were initially unsure what kind of payload to
create once we had gained the ability to execute
arbitrary code on the SNES. Initially we investi-
gated methods of showing crude video, but aban-
doned it after spending far too much time failing to
increase the datarate and running into limits with
the processing speed of the SNES’s 65C816 CPU.
An IRC discussion about Twitch Plays Pokémon®
led dwangoAC and p4plus2 to brainstorm what it
would take to incorporate similar elements into our
payload, and the concept of Pokémon Plays Twitch
was hatched—where a Pokémon character enters a
Twitch chat room and “plays” Twitch. In the end,
we took it to the next level by giving Red a voice in
a chat interface on the SNES and giving TASBot,
the robot holding the replay board, the ability to
speak through espeak and argue with Red. There’s
much more to say about that, but let’s first get to
the point where we can execute arbitrary code!

unzip -j pocorgtfolO.pdf pokemon_plays_twitch/pokered-master.zip

8The term “bot” was originally used because it’s as if you have a robot playing the game for you; dwangoAC later attached
one of these replay devices to a R.O.B. robot as shown in Figure 1 and after presenting Pong and Snake on SMW, the name
TASBot came to be associated with the combination as described at http://tasvideos.org/TASBot.

9A way of crowdsourcing gameplay by parsing commands sent over IRC.

RIvVals RHarE=
FxRxPy_

EF S HTI
Moo P oo R
o I

5 L IpFe T
F 2 « 2 B

case

=)

CO = R
w o~ - X @
- = C [0

Q

i

Q0
3
im
T

Figure 2 — A strange rival

3.6 Stage 0: Corrupting a save game.

(3-7 bytes per minute.)

We start the game by creating a save file, giving
ourselves the default name of Red and naming our
rival RxRxfk as shown in Figure 2. We then save the
game as in Figure 3, but reset the console directly af-
ter it starts writing to the cartridge’s SRAM. There
is checksumming on most of the values in the save
file but at least one value has no checksum at all,
namely the byte at the start of the “party data’
that stores the number of Pokémon that have been
caught. By some chance, this value in SRAM (at
0xAF2C, or 0x2F2C when paged) is initially set to
FF, so we wait long enough for valid name data and
a save file header to be written before resetting. It is
possible to do this with human reflexes as the win-
dow is approximately 20 ms but we opted to run
a wire from our replay device to pin 19 on the ex-
pansion port on the underside of the SNES. This
allowed us to trigger a reset by shorting the pin to
ground, as shown in Figure 3.1°

11

13

15

17

27

3.7 Stage 1: Writing Z80 assembly
by swapping Pokémon and toss-
ing items.

(30 bytes per second.)
After loading the game but before changing any-
thing, the initial state of the GBBUS memory map

is as follows:!!

0xD163 Number of Pokemon caught ,
corrupted to OxFF in Stage O.
0xD164 Pokemon IDs (1 byte each),
corrupted to OxFF.
0xD16A Sentinel byte (0xFF)
0xD16B Pokemon Data (44 bytes each);
all are corrupted to OxFF.
0xD273 Pokemon original trainers;
all are corrupted to OxFF.
0xD2B5 Pokemon nicknames;
all are corrupted to OxFF.
0xD2F7 Pokemon owned bitmap (19 bytes);
all zeroes.
0xD30A Pokemon seen bitmap (19 bytes);
all zeroes.
0xD31D Number of items; initially O
0xD31E Items array; each entry is 2 bytes,
an item ID and item count.
After the last item, there is an FF.
(Initially located at O0xD31E.)
0xD347 Money as Binary—Coded Decimal.
(Initially 00 30 00, $3000.)
0xD34A Rival’s name. (Set during Stage O,
initially
91 F1 91 F1 E1 50 00 00 00 00 00.)
0xD355 <misc data>
0xD36E Map level script pointer.

(Initially BO 40.)

We want to adjust some of these values to cre-
ate a payload described in the next section, and the
game conveniently provides three ways to arrange
the state of memory.

e Swapping Pokémon: The game implements
moving Pokémon around the list by swapping
the raw contents of entries in the ID, Data,
Original trainer, and nickname tables, which
happens to offset data by an odd amount.
Since we have 255 Pokémon instead of the 141
the game was originally limited to we can swap

10As with many exploits, the seed for this came from Bortreb’s Pokémon Yellow exploit, which itself came from earlier
discoveries of others. Masterjun adapted the exploit for Pokémon Red using the BizHawk DMG emulator and dwangoAC took
this information and made the Stage 0 and Stage 1 movie file in LSNES.

I The same values can be found in the GBWRAM region at an offset of -0xC000, so the value for 0xD163 in GBBUS (which
isn’t visible in the LSNES memory editor) can instead be found at 0x1163 in GBWRAM. GBBUS addressing is used throughout
for consistency with existing resources such as the pokered disassembly.

12This means the Pokémon data now extends past end of WRAM, and in fact the WRAM should in effect loop around,

although this isn’t used.

around the contents of anything in WRAM
above 0xD164.12

e Tossing items: Throwing away unwanted
items decrements the second byte in an item’s
two-byte ID / Quantity pair. Unfortunately,
there are some items that can’t be tossed, ei-
ther because the game prevents tossing them
or because doing so softlocks or crashes the
game.

e Swapping items: Items can be swapped
around in the list of items, which normally
just swaps the item data. If you swap two of
the same item, the game tries to merge them
by adding their counts and then shifting the
item list. The shift adjusts the item count
and writes a new sentinel item ID. (It doesn’t
touch either the item count in that slot or the
old sentinel.)

Since we don’t have any items, let’s get some!
Swapping the first Pokémon with the tenth causes
the FF’s located at 0xD16B through 0xD196 to be
written to 0xD2F7 through 0xD322. Per the mem-
ory map, the number of items is located at 0xD31D
and this is changed along with lots of other nearby
addresses from 00 to FF, which causes the game to
think we have 255 items. We eventually enter the
item menu and proceed to toss a number of safe

items, but—because we can only ever decrement the
quantity byte in each item’s ID/Quantity two-byte
pair—we have to go back and swap Pokémon to make
what was once an ID into an item count and vice
versa.

In order to avoid softlocking the game, we have
to walk through the sequence in a very particular
order. There are several items that the game re-
fuses to toss, some that crash the game if you try to
toss them, some that can only be thrown once—after
which all items afflicted with this condition can no
longer be tossed. Some will crash the game simply
by being in the menu even if you never even select
them.

To work around these pitfalls, we prepare mem-
ory by doing several Pokémon and item swaps fol-
lowed by an initial round of tossing, we go back to
swap Pokémon in a way that realigns memory so we
can now toss what used to be item IDs. We swap
several Pokémon to relocate the Stage 1 code and
create a swath of 0’s in front of it, and at the very
end we swap two identical items to shift memory two
spaces back. That’s a lot to take in in one sentence,
so Figure 4 diagrams the complete list of changes
we make showing the value changes as anchored ini-
tially from GBBUS 0xD349.

The primary purpose of all this swapping and
tossing is to create a better way to craft our own

13The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4, but they turn into 00 63 and 00 91 because we
abuse the fact that the game assumes a quantity of 00 is the same as FF and you can only have ninety-nine of any given item
in one slot. This results in FF + F4 = 1F3 which is larger than the sum mod 256 dec., at which point the game stores 63 in one

=
T
[55)
oy

34318
343z A
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443

FLAYER RED
BaDGES O
POk EDEX O

OOl

3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456Reset console
3457

==
') N O =

" COPT IO

like to

Would gou
SAWE the game?

Figure 3 — Corrupting a save game by pressing A to save, then resetting 24 frames later.

Address ## ID ## ID ## ID ## ID ## ID ## ID ## ID

OxD34A 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00
Pokemon 1 & 10 >datastart = 0xD349
item 3 © 5 =>datastart = 0xD347
Pokemon 3 ¢ 6 =>datastart = 0xD331
item 3 & 4 >datastart = OxD32F

—_—
- OxD32F 00 91 F1 91 F1 E1 50 00 00 00 00 00 0O 00
boancEL toss 1 item

B = —_—

- pre——— OxD32F 00 91 FO 91 F1 E1 50 00 00 00 00 00 00 00
= ? soanceL. %P toss 1 item
r@

OxD32F 00 91 FO 91 FO E1 50 00 00 00 OGO 00 00 00

CANCEL
»CANCEL.
xFo

OxD32F 00 91 FO E1 50 91 FO 00 00 00 00 00 00 00

OxD32F 00 91 FO 00 00 91 FO 00 OO0 0O 00 E1 50 00
toss 24 items
OxD32F 00 91 FO OO0 00 91 FO 00 00 OO0 OO E1 38 00
toss 12 items

OxD32F 00 91 FO 00 00 91 FO 00 F4 00 00 E1 38 00
(same ID swap)

OxD32F 00 91 FO 00 63 91 FO 00 91 00 00 E1 38 00

toss 20 items

OxD32F 00 91 FO 00 4F 91 FO 00 91 00 60 E1 38 00
Pokemon 4 & 5 >datastart = 0xD324
(even address, so now ID and ## are shifted)

Address ID ## ID ## ID ## ID ## ID ## ID ## ID ##

—_—
o 0xD324 00 91 FO OO0 4F 91 FO 00 91 00 00 E1 38 00
—_— o ﬁ@ toss 45 items
P iren et wgﬁéif“ O0xD324 00 91 FO 00 4F 91 FO 00 91 00 00 E1 38 D3
R = toss 20 items

by OxD324 00 91 FO 00 4F 91 FO 00 91 00 66 CD 38 D3

' — toss 222 items

Ijjx;on OxD324 00 91 FO OO0 4F 91 FO 00 91 22 606 CD 38 D3
| toss 8 items

B 0xD324 00 91 FO 00 4F 91 FO F8 91 22 00 CD 38 D3

" toss 27 items

Iji?; xo A OxD324 00 91 FO OO0 4F 76 FO F8 91 22 606 CD 38 D3

cance. Fl] , toss 8 items

OxD324 00 91 FO F8 4F 76 FO F8 91 22 060 CD 38 D3
toss 27 items

| OxD324 00 76 FO F8 4F 76 FO F8 91 22 00 CD 38 D3

Pokemon -8

-7 =>datastart = 0xD350
Pokemon 3 4 >[0xD35B] = 00
Pokemon 4 5 =>[0xD366] = 00

2 =>datastart = 0xD366
-11 >[0xD2CC] 00
Pokemon -11 -9 =>[0xD32E] 00
item 4 5 =>datastart = 0xD362
OxD362 00 76 FO F8 4F 76 FO F8 91 22 00 CD 38 D3

Pokemon 5
Pokemon 2

T e

Figure 4 — Pokémon and items are re-arranged in memory to create shellcode.

11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 XA xB xC xD xE xF

ox NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (al6),SP ADD HL,BC LD A,(BC) DEC BC INC C DEC C LD C,ds RRCA
1x| STOP © LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA IR r8 ADD HL,DE LD A,(DE) DEC DE INC E DEC E LD E,d8 RRA
2x| IR NZ,r8 LD HL,d16 LD (HL+),A INC HL INC H DEC H LD H,d8 DAA JR Z,r8 ADD HL,HL LD A,(HL+) DEC HL INC L DEC L LD L,d8 cPL
3x| IR NC,r8 LD SP,d16 LD (HL-),A INC SP INC (HL) ~ DEC (HL) LD (HL),ds SCF JR C,r8 ADD HL,SP LD A,(HL-) DEC SP INC A DEC A LD A,ds CcCF
4x| LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD ¢,C LD C,D LD C,E LD C,H LD C,L LD C,(HL) LD C,A
5x| LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,H LD E,L LD E,(HL) LD E,A

LD H,C LD H,D LD H,E LD H,H LD H, (HL) LD H,A s LD L,D
7x| LD (HL),B LD (HL),C LD (HL),D LD (HL),E HALT

LD L, (HL)

SBC A, (HL) SBC A,A

Ax AND H
OR H
CALL NZ,al6

XOR H
CP D

JP Z,al6 PREFIX CB CALL Z,al6 CALL al6 ADC A,d8 RST 08H

RET NZ PUSH BC ADD A,d8 RST 00H

RET

Dx RET NC POP DE JP NC,al6 CALL NC,alé PUSH DE SUB d8 RST 10H RET C RETI JP C,al6 CALL C,al6 SBC A,d8 RST 18H
Ex | LDH (a8),A POP HL LD (C),A PUSH HL AND d8 RST 20H ADD SP,r8 JP (HL) LD (al6),A XOR d8 RST 28H
Fx | LDH A, (a8) POP AF LD A, (C) DI PUSH AF OR d8 RST 30H LD HL,SP+r8 LD SP,HL LD A,(al6) ET Cp d8 RST 38H

Items with these IDs can be tossed
Game refuses to toss items with these IDs

Figure 5 — Item IDs can double as Z80 opcodes.

code—as it would be quite tedious to use this method
to do anything longer.!> Here’s a disassembly of
what we’ve been able to write so far, starting from

ing the menu, the map level script pointer is loaded
and called, so it loads the value in 0xD36E into HL
and jumps to it.

0xD361.
oxD362 00 76 FO F8 4F 76 FO F8 91 22 0@ CD 38 D3 1041 LD HL, 0xD36E
2/ 1044 LD A, (HL+)
' 1045 LD H,(HL)
LR;%SQS?) shellc%dRes:.:OgD%L 1/ now 4[1046 ID L,A
—)
.16 HALT // wait for frame 1047 LD DE, 0x104C
Player's . 6 104A PUSH DE
startingmoney FO F8 LDH A, (0xF8) // load 1input 104B JP (HL) ; [D36E|
4F LD C,A // save in C)
76 HALT // wait for frame
FO F8 LDH A, (0xF8) // load 1input
91 SUB C // decode opcode
22 LD (HL+),A // stage2[HL++] = A Stage 1’s purpose is to read the buttons being
00 NOP

held down on the controller and write them some-
where, eventually executing what we’ve written us-
ing this slightly more efficient method than twid-
dling with Pokémon and items. At a high level,
this code will read a byte from the controller on one
frame, read another byte from the controller on the
next frame, subtract the two, store the result at a
given memory offset and repeat, successively storing
values one byte at a time in order in memory, and

CD 38 D3 CALL 0xD338 // call stage2

Everything up to this point has been the process
of writing Stage 1, but now it’s time to walk through
executing it, although some of the shortcuts we took
require a bit of explanation.

First, the reason 0xD361 contains 30 is because
the beginning of the Stage 1 data is mostly copied
from the field that holds the rival name—which hap-

pens to be directly preceded by the player’s money.
Of this quantity we see the last two out of three
bytes represented here in BCD format; the full value
00 30 00 starts at 0xD360. It would take extra ef-
fort to eliminate the 30 00 portion, but because that
sequence is effectively a NOP, we leave it be.

To reduce the number of bytes that needed to
be modified, we used several clever tricks. The code
that jumps to this point sets HL to the jump target
address, and HL is a canonical pointer register that
can be written to. We reused 0xD36E (the map level
script pointer) as the loop jump address; upon exit-

ultimately executing said bytes.

The game’s NMI (Non-Maskable Interrupt) rou-
tine writes a bitmap of the current buttons be-
ing held down during each frame (mapped as the
buttons ABsSRLUD from lowest to highest bit)
to OxFFF8, and HALT is used to wait for the next
frame. Unfortunately, the SGB BIOS cancels out
LEFT+RIGHT or UP+DOWN if they are pressed
simultaneously and instead converts those bits to
0’s. To work around it, our short routine reads
two frames and combines the values in a way that
can yield arbitrary bytes. Because of restrictions on

item and 190modFF = 91 is stored as the remainder in the other.
MThere is no working way to ADD the two reads because we can’t write that opcode. Due to byte restrictions, we can’t use
JP either, but CALL is close enough. See Figure 5.

12

which bytes we can create, we use LD C,A to store
the first value and then SUB C to combine them.'4

Using this method, we write the following data
to 0xD338, which is executed every frame; that is to
say, it is repeatedly executed even before it is fully
written!

18 27 <= first jump

3E 1C CD AF 00 21 4D D3 CD EB 5F 2E 58 00 CD
EB 5F 18 FE 79 00 18 00 06 AD 12 42 30
FB 40 91 18 42 00 00 18 00 00 00 <=
Stage 2 payload

18 D7 <= second jump

The memory range from 0xD338 to D360 con-
tains only 00’s and forms a cascade of harmless NOP
instructions. This is critical, because this entire sec-
tion is executed every time a byte is written; this
also means we have to be extremely careful with
what we write, to avoid executing an incomplete
Stage 2 that causes a crash. The solution is to write
a jump instruction of 18 27 into the first two bytes—
which will skip execution of Stage 2 while it is being
constructed. The sequence 18 27 can’t be entered
in one frame, but fortunately the incomplete form,
18 00, is effectively a NOP instruction. This gives
us the full range from 0xD33A to 0xD360 where we
can write whatever we want with impunity, and HL
points to 0xD33A.

player's

‘money written by inventory abuse

exploit call [! |
_1 D361 D363 D36D D370

D338, 1 I | |

NOPs (005) IR NC,0 |51 payload | Call[D338]]

1 s NP LA feah Secotion Ll

exploited

write position address
(by S1, from the data
sent via the controller)

We write 0x18 (JR x) into current write position
and advance write position:

D338 D33A D361 D363 D36D D370
an | J- 1 1 |
I [3RJee | NoPs (eos) | 3R nc,e |1 payload | call D338 |
f &) i)

write position
We write 0x27 into current write position, turn-

ing the first instruction into a nontrivial jump.
D338 D33A D361 D363 D36D D370

NOPs (00s)

write position
We write the Second Stage to D33A-D360 which
is jumped over and not executed. This takes 39 it-
erations through the loop.

D338 D33A D361 D363 D36D D370
! | } |] |
I JR 39 J S2 payload (skipped) I “IR NC"E,G JS1 payload l Call D338 I
[¥ X

After this, we somehow need to jump to the
newly completed Stage 2. The HL now points to
0xD360 and the next byte we poke is 18, which turns
the first instruction in the Stage 1 code into JR 0,
which is still effectively a NOP.

We write 18 (JR x) to current position, turning

the 30 into 18, acting as a JR 0 instruction.

D338 D33A D361 D363 D36D D370
| | J |] |
I IR 39 J S2 payload (skipped) I “[3r]e JS1 payloadl Call D338 I

[L) X [
write position

We write D7 into 0xD362, which modifies the in-
struction to be JR -41, which jumps to 0xD33A, the
start of the second payload. After one more call into
0xD338 and the subsequent jump to 0xD360, the ex-
ecution jumps to the Second Stage.

We write D7 (-41) to current position, turning

the jump into a jump to execute the Stage 2:
D338 D33A D361 D363 D36D D370

I JR 39 J S2 payload (executed) I JRD' JS1 payloadl Call D338 i
L s [[

write position

One last note before moving on to what Stage 2
will do for us: as with most things in this exploit, en-
tering the Stage 2 payload isn’t as straightforward as
it should be, and this time it’s because the SNES and
the DMG run at different clock speeds and framer-
ates. It takes 351,120 cycles for the DMG to run one
frame, and 357,366 for the SNES to run one frame.
Each side polls the inputs once per their frame, and
the SNES side updates the inputs that the DMG
side reads once per frame. Since each SNES frame
takes slightly longer, the SNES regularly skips up-
dating inputs for one full DMG frame, causing the
input to be duplicated.!®

This clock skew slip happens about every 56
DMG frames. (Sometimes it’s 57 frames between
slips due to slipping.) It takes a full 86 frames
to input the Stage 2 sequence because there are
39 bytes of payload plus 4 bytes total for prologue
and epilogue jump instructions, and each byte takes
2 frames to enter as a result of working around
L+R and U+D combinations being nulled out. This
means we have to cope with at least one clock skew
slip and because 86 isn’t that much bigger than 2*56

15This has implications even outside of TAS’ing: If you hold a button for a single frame you risk that input being lost (if
the previous frame had no buttons being pressed, that single frame’s press could be overwritten with the no buttons pressed
frame from before) or your buttons could be held for an extra frame (even though you let go, you hit right before the skew so
your buttons are sent for an additional frame). Both of these behaviors could cause a talented realtime player to question their
abilities as they wouldn’t have any idea that the console had been the cause of their input being wrong.

12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032pYsE+=»AXLRO1ZIRYSE = +AXLRO123EYSsE = +AXLRO123EYSE T+ oA RO 123
12033
12034 s < A

12035 >
12036F S5+
12037
12038| s5 -
12039+
12040 s5 A
12041
12042 s5 +* A
12043
12044
12045
Figure 6 — Sending payload (combos injected by first controller)
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (al6),SP ADD HL,BC LD A, (BC) DEC BC INC C DEC C LD C,d8 RRCA
1x STOP @ LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA JR r8 ADD HL,DE LD A, (DE) DEC DE INC E DEC E LD E,d8 RRA
2x| IR NZ,r8 LD HL,d16 LD (HL+),A INC HL INC H DEC H LD H,ds DAA JR Z,r8 ADD HL,HL LD A,(HL+) DEC HL INC L DEC L LD L,ds cPL
ax LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B, (HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,H LD C,L LD C,(HL) LD C,A
5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D, (HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,H LD E,L LD E, (HL) LD E,A
6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H, (HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,H LD L,L LD L,(HL) LD L,A
8x ADD A,B ADD A,C ADD A,D ADD A,E ADD A,H ADD A,L ADD A, (HL) ADD A,A ADC A,B ADC A,C ADC A,D ADC A,E ADC A,H ADC A,L ADC A, (HL) ADC A,A
9x SUB B SuB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC A,B SBC A,C SBC A,D SBC A,E SBC A,H SBC A,L SBC A, (HL) SBC A,A

AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR H XOR L XOR (HL) XOR A

from http://wwi.pastraiser.com/cpu/gameboy/gameboy_opcodes . html

Figure 7 — Z80 opcodes that can be sent through SGB input filtering.

the slip position must be relatively near the middle we need to switch to. While the ROM bank can be
to avoid having to deal with two slips.'6 switched by a single write, the game NMI routine
(which runs every frame) does not save the bank -

. it switches to one stored in another memory address
3.8 Stage 2: Sending packets to es- instead. Two writes are needed to reliably change

cape SGB from very little space. the bank which would take too much space; however,
the common part of ROM (mapped regardless of
the bank) has a function that does something, then
switches banks and returns. That function makes
for a very useful gadget! The entry address for this
function is 0x00AF, with register A holding the bank

We have just 39 bytes to work with in the Stage 2
payload we just wrote and we need to make the most
out of every last byte. Fortunately, Pokémon Red
already contains a routine that sends a command
packet into the SNES. The catch is the code to send

o number.
that packet is in another ROM bank (0x1C) that
16The movie we used was 2(prologue)+5(banksetting)+6(packetsend)+5(packetsend)+1(nop-for-
slip)+2(hang)+11(packet1)+7(packet2)+2(unused)+2(epilogue) =43 bytes. We later discovered

a different method where the smallest possible extended payload would have been 2(pro-
logue)+5(banksetting)+6(packetsend)+2(hang)+13(packet)+2(epilogue)=30 bytes which is still too much to input without a
slip due to our data rate being restricted to one nibble at a time, although the packet data’s 0x00 portion could potentially be
used for this purpose.

171t could be possible to use just one, by putting the NMI routine in a memory-mapped SGB packet register, but we decided
not to, as we would need full exploit abilities just to test if this method actually works because the emulator isn’t accurate
enough to test with.

11

13

15

17

19

21

23

25

We need to send two separate command pack-
ets, described below.!” The packets aren’t a full 16
bytes in length like they appear to be, but 11 and 7
bytes; the tails of the packets are ignored, so we let
the packet payloads overrun into whatever happens
to be next. After sending the packets, we have no
use for the DMG anymore, so we hang the Z80 by
entering a tight loop.

The following Stage 2 assembly code is loaded
into 0xD33A—D360.

; The gadget takes a new bank number in A.
3E 1C LD A, #$1C

; Call the bankswitch gadget.

CD AF 00 CALL $00af

; The address of the first packet to send.
21 4D D3 LD HL, packetl

; Call packet send routine.

CD EB 5F CALL $5feb

; The low byte of address of the 2nd packet.

; used to compensate input slipping.
2E 58 LD L, 0x58
00 NOP

; Call packet send routine.
CD EB 5F CALL $5feb

18 FE JR -2 ; Hang the DMG.
packetl: ; 0xd34d
DB 0x79, 0x00, 0x18, 0x00, 0x06, Oxad,
0x12, 0x42, 0x30, Oxfb, 0x40
packet2: ; 0xd358
DB 0x91, 0x18, 0x42, 0x00, 0x00, 0x18,
0x00, 0x00, 0x00

Originally, the LD L, 0x58 ; NOP sequence was
LD HL, 0xD358 but we discovered that the transfer
routine leaves the upper eight bits of the address in
the H register at the end of the transfer. The trans-
fer end of the packet at 0xD34D will be 0xD35D, so
the H register will be D3, which is exactly the value
we want for the next packet, so we can save one byte
by just loading the L register. The saved byte can
taken to be NOP (00).

The repeated input can land on two inputs of
the same byte, or the last input of one byte and
first input of next. The latter is much better, since
for any byte pair, it is possible to construct three
valid inputs. However, the first is much worse: The
byte will be forced to 00, and even more unfortu-
nately, the frame rules always cause the duplication

to occur in a bad way. The 00 freed from only
loading L is close enough to the middle that this
byte can be targeted for duplication. It turned out
that the emulator doesn’t emulate the input slipping
quite accurately and we (dwangoAC) had to do a lot
of tedious trial and error testing to time the input
correctly.'® The offset between emulator and real
hardware turned out to be eight frames, which we
adjusted by adding eight frames of no input into the
file sent to the bot prior to exiting the menu.

3.9 Exploiting DMG—SGB com-
mand packets for gaining a
foothold on SNES

The Super Game Boy command packet protocol has
two nifty commands for gaining control of the SNES.
0x79 writes arbitrary data to an arbitrary memory
location, while 0x91 sets the NMI vector and jumps
to an arbitrary address. Both commands are real,
documented command packets; they are not undoc-
umented debug commands.

Since the Stage 2 executing on the DMG is so
small we needed to minimize the number of pack-
ets required. The SNES’s controller registers are
memory-mapped I/O registers that automatically
update each video frame when enabled. It is possible
to execute code from those registers but it isn’t par-
ticularly easy to do so, largely because it is very un-
safe to execute anything from those registers when
they are in the middle of an update. (There are all
sorts of intermediate stages.)

The solution is to find some way for the SNES
CPU to waste time during that update elsewhere.
The NMI vector and the NMI handler are perfect
for this: when enabled, it starts running just before
the register starts updating, so we just need an NMI
handler that wastes somewhere between roughly 4
and 260 scanlines so it hits after the current NMI
returns but before the next NMI starts. Scanning
descriptions of various SNES I/O registers, a useful
one seems to be $4212, which has bit 7 set when
the console is performing a vertical retrace. The
NMI occurs immediately after the vertical retrace
starts and the retrace lasts for about 40 scanlines,
so waiting for $4212 bit 7 to clear works out per-
fectly. Since the retrace bit is bit 7 and the SNES
CPU happens to be in a mode where the A regis-

18Fach blind test took about 5 minutes, as we had to play back the entire movie before reaching the point where we could
determine if it worked and we weren’t entirely certain it would work at all, but eventually we discovered the correct offset.
19Based on the setting of a flags register bit that selects between an 8- and 16-bit A register.

ter is 8 bits wide,!® numbers with bit 7 set show as
negative, so it’s trivial to branch on those using BMI
instruction. Handily enough, the LDA instruction
that loads the memory address into the A register
sets the condition flags, so we can just loop around
that one instruction using BMI.

After the loop, we must return from the NMI.
This is done using the RTI instruction, so the final
NMI handler looks like:

The second one jumps to 0x004218 (which is the
start of the controller registers), with the NMI vec-
tor set to 0x001800 (which points to the routine we

just wrote).2°
91 5 Jump
18 42 00 ; Jump Target

00 18 00 ; NMI Vector

loop:

AD 12 42 LDA $4212 ;Read 0x4212.

30 FB BMI loop ;Loop while bit 7 is set.
40 RTI ; Return from NMI.

This handler trashes the A register, which is gen-
erally considered bad style, but we can get away
with doing that.

We send two packets; the first one writes six
bytes (AD 12 42 30 FB 40) into the memory ad-
dress 0x001800. This is the NMI routine.

79 ; Write Memory
00 18 00 ; Target Address
06 ; Size

AD 12 42 30 FB 40 ; Content

]

"=/

B5H 0=
plagding the SHKHES®

Figure 8 — Inception

3.10 Stage 3: From stable loop in au-
topoller registers to loading pay-
loads.

(480 bytes per second; 60 payload bytes per second.)
We have transferred control flow to controller
registers, but we aren’t done just yet. The controller
registers are only eight bytes in size, and normally
not all bits are even controllable. However, there are
some tricks we can play to control all the bits. First,
even though a standard SNES controller only has 12
buttons, the autopoller reads all 16 bits. Normally
the last four bits are controller type identification
bits. Since those bits are read from the controller,
the controller can set those bits to whatever it likes,
including changing those bits every frame. Second,
the last four bytes of the register are read from the
second data line that is normally not connected to
anything unless there is a multitap device. It isn’t
possible to just connect a multitap device whenever
we like as the game will softlock. Fortunately, it is
possible to just connect the second controller so that
it shares all the other pins (+5V, ground, latch and
clock), but use the second data pin instead the first.
These two tricks allow controlling all 128 bits in
the controller registers which gives us 8 bytes of data
per frame. While this is a huge improvement over
our Stage 1 effective data rate of a nibble per frame
it still only amounts to a datarate of 300 bytes per
frame because three of those 8 bytes need to be used
for looping in the controller registers, leaving only
five bytes usable. (Although, as you’ll see, only one
byte of payload data can be sent per frame.)
Specifically, to loop successfully in the controller
registers we need to wait for the NMI induced in-
terrupt in order to avoid the NMI happening at an
unpredictable instruction (because the NMI trashes
A) and then jump to the start of the controller reg-
ister. Then there is issue that NMI is not initially

20We considered putting the NMI code into the SGB packet receive buffer, which is a memory-mapped I/O register (and
presumably can be executed by the CPU). We decided against this since the SGB emulation in BSNES is quite questionable
and we didn’t know if it would work, largely due to the difficulty of testing it.

enabled, even if the handler is set, so the first frame
has to enable the NMI handler. Fortunately, this
can be done rather compactly:

loop:

A9 81 LDA #$81

8D 00 42 STA $4200 ; Set 0x4200 = 0x81 (
autopoller enabled, IRQ disabled , NMI
enabled)

CB WAI

80 F8 BRA loop

Since the code is idempotent, this is good time to
switch from sending input in once per frame to send-
ing input in once per latch poll. The way the SGB
BIOS polls the controllers is completely crazy, often
polling more than once per frame, polling too many
bits, trying to poll but leaving the latch held high,
etc. Because this is a somewhat common problem
even in other games, the bot connected to the con-
troller ports has a mode where it synchronizes what
input to send based on the edge of each video frame
(i.e. 60ths of a second in a polling window) by keep-
ing track of how much time has elapsed; if the game
asks for input more than once on the same frame
we give it that frame’s input again until we know
it is time for the next frame’s polls, which means
we can follow the polling no matter how crazy it is.
The obvious tradeoff is that this mode is limited to
8 bytes per frame with 4 controllers attached, so we
need to switch the bot’s mode to one that is strictly
polling based, sending the next set of button presses
on each latch. Making that transition can be a bit
glitchy considering it was added as a firmware hack
but because this piece of code is idempotent we can
just spam the same input several times as we only
need it to hit in the range. This happens from frame
12117 to 12212 in the movie.

We now have a stable loop in the controller reg-
isters that we can use to poke some code into RAM.
The five bytes per frame is enough to write one byte
per frame into an arbitrary address in first 8kB of
the SNES’s RAM:

LDA #8$xx
STA $yyyy

This assembles to five bytes, A9 xx 8D yy yy.
Finally, after the writes, we can use JML (four bytes)

10

12

14

16

18

20

22

to jump to the desired address. Since the DMG is
still playing some annoying tunes, the first order of
business is to try to crash it. Writing 00 to the clock
control /reset register at 0x6003 should do the trick
by stopping the DMG clock, and in fact this works
in the LSNES emulator, but on a real console the an-
noying tunes keep playing until the DMG corrupts
itself enough to crash completely.?!

3.11 Stage 4: Increasing the datarate
even further.

(3840 bytes per second.)

One byte per frame is rather slow as it would take
us several minutes to write our payload at that speed
so we poke the following routine (Stage 4) that reads
8 bytes per frame from the autopoller registers and
writes it sequentially to RAM, starting from 0x1A00
until 0x1B1F into address 0x19000.

SEP #8$30 ; Set 8—bit A and X/Y

LDA #$01 ;Set 0x4200 = 0x01
;(autopoller en, NMI dis)

STA $4200

REP #$10 ; Set 16—bit X/Y, keep A 8—bit.

LDY #$1A00 ;Load address to write to.

wait _vblank start:

LDA $4212 ; Wait until vblank starts.

BPL wait vblank start

wait _vblank end:

LDA $4212 ; Wait until vblank ends, so the
;new controller value arrives.

BMI wait vblank end

LDX #$4218 ;Start address of controller reg

LDA #8$00 ; MVN copies 16—bit amount of
bytes, even with A being 8 bit.

XBA ; So ensure that the high bits are
Zero .

LDA #8$07 ; A= 7, copy 8 bytes.

PHB ; MVN changes the data bank
register, so save it.

MVN $7E; $00 ; Copy the 8 bytes from 0

x4218 to RAM. Y is auto—incremented.
PLB ; Restore the data bank register.
CPY #$1B20 ; Have we reached 0x18207
BNE wait_vblank start ; If no, wait a frame
and read again.
JML $7E1A08 ; Jump to read payload.

As machine code, e2 30 a9 01 8d 00 42 c2
10 a0 00 1a ad 12 42 10 fb ad 12 42 30 fb

211t’s not a surprise that it behaves differently in the emulator, as the SGB emulation accuracy in BSNES is questionable
in a lot of places; it’s possible that the emulator is triggered on a different edge of the clock than real hardware or something
similar. Regardless, on real hardware the DMG eventually crashes in a way that makes it stop producing sound and while it’s
about the equivalent of driving a car into a brick wall instead of hitting the brakes it at least gets the job done.

17

a2 18 42 a9 00 eb a9 07 8b 54 7e 00 ab cO
20 1b dO e4 5c 08 1a Te. 25| REP #8$30 ; 16—bit A/X/Y.
Why jump to eight bytes after the start of the 27| LDA 450000 . Initially no transfer.
payload? It turns out that code loads some junk STA $0008
from what is previously in the controller registers 29
on the first frame, so we just ignore the first few 51 frame_loop:
bytes and start the payload code afterwards. Eight SEP #$20
bytes per frame still isn’t fast enough, so the rou- 33 not in_vblank: ; Wait until next vblank ends
tine this code pokes into RAM is another loader rou- LDA $4212
tine that uses serial controller registers to read eight 3% BPL Ill)cl’tflinf"blank
. . m v ankK:
bytes eight times per frame, for total of 64 bytes per 7|1 A g4212
frame. BMI in_vblank
Let’s take a look at the Stage 5 payload: 39| REP #820
; 0000 => Current transfer address. 41|LDA #8$0008
; 0002 => Transfer end address. STA $0004
; 0004 => Blocks to transfer. 43| LDA #8$0000
; 0006 => Current transfer bank. STA $000C
; 0008 => 0: Transfer not in progress. 45
; 1: Transfer in progress. rx block:
; 000C => Blocks transferred. 47|LDA #$0001
; 0010 => Jump vector to next in chain. STA $4016
; 0020—0027 => Buffer 49|LDX #3%0003
; 0080—00BF => Buffer. latch _high wait:
51| DEX
Start : BNE latch high wait
NOP ; 8 NOPs, for the junk at start. 53/ STZ $4016
NOP LDX #8$0004
NOP 55| latch_low _wait:
NOP DEX
NOP 57|BNE latch low wait
NOP
NOP 59| LDA #$0000
NOP STA $0020
SEI 61|STA $0022
LDA #$00 ; Autopoll off , NMI and IRQ off. STA $0024
STA $4200
1 2 B 4 T FFFFF T A
12104
12105 5 = ”"”"”’ L]
12106 sRED
12107 4
12108
12103 4
12110
12111 L]
12112 -
12113 5 = =
12114 + = =
12115 5 * A F A
12116 .
121178 FARLROLZopYSs T e ARLROLE A 01 3BYsSt A _Lt*l
12118 SHELO FEY ter¥ 2 A Of 3pYsst A
12119 SBELO FRY terx 7 A Ol aAvsst A |
12120f SALO ZRY ek 2 A 0L 3pvsSt A i
12121 SH L0 dpY e ¥ 2 A 01 3pYsst A 4
12122F S L0 3Ry e H 2 A 01 3EYsSr A =
12123 SHL 0 dEY e H 2 A 01 3pYsst A 5 4
12124 SHELO 3EY tes¥ 2 A 01 3pYssSt A : I
12125 SHLO 3EY Ter¥ 2 A 01 3pYsSt A |
12126 SHL O FEY terx 2 A 01 3YsSt A
12127F SHLO FEY terx 2 A Ol 3Ysst A |
12128 SHELO FEY terx 2 A Ol 3Ysst A
12129 SBELO FRY terx 7 A Ol aAvsst A |
12130 +8 10 3RY +ee ¥ 2 A 01 3AYsSr A &

Figure 9 — Now using four controllers!

18

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

STA $0026

LDY #3$0010

read loop:

LDA $4016

PHA

; Bit 0 = 0020,
; Bit 8 = 0022,
BIT #30001

BNE bOnz

LDA $0020

ASL A

BRA b0d

bOnz:

LDA $0020

ASL A

EOR #$0001

bod :

STA $0020

Bit 1
Bit 9

PLA

PHA

BIT #$0002
BNE blnz
LDA $0024
ASL A

BRA bld
blnz:

LDA $0024
ASL A

EOR #$0001
bld:

STA $0024

PLA

PHA

BIT #$0100
BNE b8nz
LDA $0022
ASL A

BRA b8d
b8nz:

LDA $0022
ASL A

EOR #$0001
b8d:

STA $0022

PLA

BIT #$0200
BNE b9nz
LDA $0026
ASL A

BRA b9d
b9nz:

LDA $0026
ASL A

EOR #$0001
b9d :

STA $0026

DEY
BNE read loop

;Move the block from 0020 to

= 0024,
=> 0026

its

final

place

129

131

133

L35

37

139

141

143

145

47

149

151

153

155

57

159

161

163

165

167

L69

L7l

73

L5

L7

179

181

183

L85

L87

189

191

19

LDA $000C
ASL A

ASL A

ASL A

CLC

ADC #$0080
TAY

LDX #8$0020
LDA #8$0007
MVN $00, $00

; Increment the counter at 000C,
; decrement the count at 0004.

; If no more blocks, exit.

LDA $000C

INA
STA
LDA
DEA
STA

$000C
$0004

$0004

BEQ exit rx_loop
JMP rx _block
exit _rx_loop:

LDA $0008

BNE doing transfer

; Okay, setup transfer.
LDA $0082

CMP #3FF

BMI not_jump

; This is jump,
STA $12

LDA $0080

STA $10

BRA out
not_jump:

LDA $0080 ;
STA $0000

LDA $0082 ;
STA $0006

LDA $0084 ;
STA $0002

copy the address.

Starting address.
Bank.

Ending address.

; Self—modify the move.
LDX #move instruction
LDA $0006

AND #$FF

STA $01,X

; Enter transfer.
LDA #$0001
STA $0008

; See you next frame.
JMP no_reset_transfer

doing transfer:

; Copy the stuff to its final
LDY $0000

LDX #$0080

LDA #$003F

PHB

move instruction:
MVN $40, $00 ;

Bogus bank, will

place

in WRAM.

be

193

195

197

199

201

203

modified .
PLB
TYA
STA
CMP

$0000

$0002

BNE no_ reset transfer

STZ $0008 ; End transfer.
no reset transfer:

; Next frame.

JMP frame loop

out:

JMP [$10]

3.12 Stage 5: Transfers of data in
blocks with headers.

(3,840 bytes per second.)

This routine is rather complex, so let’s review
some of its trickier parts.

The serial protocol works by first setting the
latch bit (bit 0) in 0x4016, then clearing it, then
reading the appropriate number of times from
0x4016 (port #1) and 0x4017 (port #2). Bit 0 of
the read result is the first data line value, while bit
1 is the second data line value. After each read, the
line is automatically clocked so the next bit is read.
The two port latch lines are connected together; bit
0 of 0x4016 controls both.

The bot is slow, so we wait after setting/clearing
the latch bit. We properly reassemble the input in
the usual order of the controller registers, since we
have CPU time available to do that. Since we read
16-bit quantities, port 0x4017 is read as high 8 bits,
so the data lines there appear as bits 8 and 9.

To handle large payloads, the payload is divided
into blocks with headers. Each header tells where
the payload is to be written, or, if it is the last block,
where to begin execution.

The routine uses self-modifying code: The source
and destination banks in MVN are fixed in code, but
this code is dynamically rewritten to refer to correct
target bank.

3.13 Automating the Movie Creation

Since manually editing, recompiling and transform-
ing inputs gets old very fast when iterating payload
ROMs, tools to automate this are very useful. This
is the whole reason for having Stage 5 use block
headers. Furthermore, to not have one person do-
ing the work every time, it’s helpful to have a tool
that even script-kiddies can run. The tool to do this

20

is a Lua script that runs inside the emulator (The
LSNES emulator has built-in support for running
Lua scripts, with all sorts of functions for manipu-
lating the emulator.)

dofile ("sgb—arbitrarywrite.lua");

make movie = function (filename)
write sgb data("stage4.dat");
write 8bytes data("stageb.dat");
write_xfer block (filename , 0x8000, 0

x7E8000, 0x4000, 8);
write xfer block (filename , 0x10000,
0x7F8000, 0x7A00, 8);

write jump block (0x7E8051, 8);
print ("Done") ;
end

This code, the main Lua script, refers to four
external files. “stage4.dat” contains the memory
writes to load the Stage 4 payload from Section 3.11
while executing in the controller registers.

This file contains the Stage 4 payload, plus the
ill-fated attempt to shut up the DMG. (As noted
previously, it dies on its own later.) The first line
containing 0x001900 is the address to jump to after
all bytes are written.

2) “stageb.dat”, which is the machine code cor-
responding to the Stage 5 loader.

3) A filename taken as a parameter, which is the
payload ROM to use. As you can see, the Lua script
fixes the memory mappings, but this is okay, as those
are not difficult to modify.

The specified memory mappings copy a sixteen
kilobyte byte region starting from file offset 0x8000
into 0x7E8000, and the 0x7A00 byte region start-
ing from offset 0x10000 into 0x7F8000. (The first
32kB is assumed to contain initialization code for
stand-alone testing, but we don’t care about that.)

4) “sgb-arbitrarywrite.lua”, which is just a
function library.

——sgb—arbitrarywrite . lua

lo = function(a) return bit.band(a, OxFF);
end

mid = function(a) return bit.band(bit.
lrshift (a, 8), OxFF); end

hi = function(a) return bit.band(bit.lrshift
(a, 16), OxFF); end

set8 = function (obj, port, controller, index
, val)

for i=0,7 do obj:set button(port,

controller , index + i, bit.test all(bit.
Ishift (val, i), 128)); end

end

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44| write 8bytes data = function (filename)
add frame=function(a, b, ¢, d, e, f, g, h, local file, err = io.open(filename);
sync) 46 if not file then error(err); end
local frame = movie.blank frame/(); while true do
frame:set button(0, 0, 0, sync); 48 local data = file:read(8);
set8 (frame, 1, 0, 0, b); if not data then break; end
set8 (frame, 1, 0, 8, a); 50 local a, b, ¢, d, e, f, g, h = string.
set8 (frame, 1, 1, 0, f); byte(data, 1, 8);
set8 (frame, 1, 1, 8, e); add frame(a, b, ¢, d, e, f, g, h, true);
set8 (frame, 2, 0, 0, d); 52 end
set8 (frame, 2, 0, 8, c); file : close ()
set8 (frame, 2, 1, 0, h); 54| end
set8 (frame, 2, 1, 8, g);
movie.append frame (frame); 56| write xfer block = function (filename ,
end fileoffset , targetaddress, size, speed)
local file, err = io.open(filename);
write sgb data = function (filename) 58 if not file then error(err); end
local jump address = nil; file :seek ("set", fileoffset);
local file , err = io.open(filename); 60 while size % (8 x speed) "= 0 do size =
if not file then error(err); end size + 1; end
for i in file:lines () do local endaddr = bit.band(targetaddress +
if i = "" then size , OxFFFF);
elseif not jump address then 62 —Write the header.
jump address = tonumber(i); add frame(lo(targetaddress), mid(
else targetaddress), hi(targetaddress), 0, lo
local a, b = string.match(i, "(%w+)%s (endaddr), mid(endaddr), 0, 0, true);
+(Pow+)") ; 64 for i=2,speed do add_ frame(0, 0, 0, 0, O,
a = tonumber(a); 0, 0, 0, false); end
b = tonumber(b);
add_frame(0xA9, b, 0x8D, lo(a), mid(a) |66/ —Write actual data.
, 0xCB, 0x80, O0xF8, true); for i = 0,size/8—1 do
end 68 local data = file:read(8);
end if data = nil then data = string.char
add _frame (0x5C, lo (jump address), mid((0, 0, 0, 0, 0, O, O, 0); end
jump address), hi(jump address), 0, 0, 0|70 while #data < 8 do data = data string
x80, OxF8, true); .char (0); end
file:close (); local a, b, ¢, d, e, f, g, h = string.
end byte(data, 1, 8);
72 add frame(a, b, ¢, d, e, f, g, h, i %
1 2 & [
12291 ¥ “XR1 B v +q RO E st &= BY 4o
12292BY & 20y 0 Vs o4 2 groe R "’""""""
12293 5 AX RO1 Y
12294
12235
12296E B s5t <= KLRO1Z
12296
12236
12296
12296
12296
12296
12296
12297BYsStee=2/ L 012 S ¥E R 0123 *AL0 3 "
12237 AL O 3 W 545 R 01273 1 AL
12297 5+ A L0125 s [RES z H sEtde W0
12297 + + 1 satde K02 5 RN
12237 Sovesp L0129 s Ax 2 bt sEtde KO0
12297 + 2 + 12 e8t4e X 028 firL
12297RY 5 fA o AL 2°0vs AX RO1 3BY S fAx 0
12297 ¥s AXLRO1 3 vesf L 2 BysSrees ML 1 5 AX RO
12298E Y5 o+ * RO T ALO 3B + 2AKLROL
12298 = AXLRO123EY ¢ AXLRO 2 B LR 1 pYs v+ R
12238F St HL Y +A RO1 = + R BooSre L :
12238 = + K 2 By - L 3 “+f ROL BY - R0
12298F s + + LRO R s+ » ¥ RO 23 "'****'*******
12298 s + » RO 23 =8 AxL 2 AL

Figure 10 — Why should we wait for next frame? Go sub-frame! (in green)

21

74

76

78

80

speed = 0);
end
file:close ();

end
write jump block = function (address, speed)
add frame(lo(address), mid(address), hi(
address), 1, 0, 0, 0, 0, true);
for i=2,speed do add_frame(0, 0, 0, 0, O,
0, 0, 0, false); end
end

This script assumes that the loaded movie causes
the SNES to jump into controller registers and then
enable NMI, using the methods described earlier. It
appends the rest of the stages and payload to the
movie. Also, since it edits the loaded input, it is
possible to just load state near the point of gaining
control of the SNES and then append the payload
for very fast testing. (Otherwise it would take about
two minutes for it to reach that point when execut-
ing from the start.)

3.14 Stage 6: Twitch Chat Interface

After successfully transferring our payload, execu-
tion of the exploit payload (created by p4plus2) can
officially begin. There are three primary states to
the final payload: (1) Reset, (2) the Chat Interface,
and (3) a TASVideos Webview.

3.14.1 The Reset

Because much of the hardware state is either un-
known or unreliable at the point of control transfer
we need to initialize much of the system to a known
state. On the SNES this usually implies setting a
myriad of registers from audio to display state, but
also just as important is clearing out WRAM such
that a clean slate is presented to the payload. Once
we have a cleared state it is possible to perform
screen setup.

In the initial case we set the tile data and tilemap
VRAM addresses and set the video made to 0x01,
which gives us two layers of 4-bit depth (Layers 1
and 2) and a single layer of 2-bit depth, Layer 3.

Layer 1 is used as a background which displays
the chat interface, while Layer 2 is used for emoji
and text. Layer 3 is unused. A special case for the
text and emoji however is Red’s own text which is
actually present on the sprite layer, allowing code to
easily update that text independently.

10
12

14

18

20

22

3.14.2 The Chat Interface

Now that we have the screen itself set up and able
to run we need to stream data from Twitch chat
to the SNES. But we only have 64 bytes per frame
available to support emoji as well as the alphabet,
numbers, various symbols, and even special triggers
for controlling the payload execution. This complex-
ity quickly bogged down our throughput per frame,
so we created special encodings for performance! On
average the most common characters will be a-z in
lower case, which conveniently fit into a 5-bit en-
coding with several more character to spare.

The SNES has both 16-bit and 8-bit modes, so
in 16-bit mode we can easily process three charac-
ters with a bit to spare! But what about the rest of
our character space? Well, we have a single bit re-
maining and can set it to allow the remaining char-
acters to be alternatively encoded. The alternate
encoding allowed for two 7 bit characters, with an
additional toggle bit on the second character.

BXXXXXXX XXXXXXXX
if (E) goto special encoding
if (lE) goto normal encoding

normal encoding:
0AAAAABB BBBCCCCC

A = full character 1
B = full character 2
C = full character 3

special encoding:
IXXXXXXX SXXXXXXX
if (S) goto special command
if (!S) goto read two_characters
read two characters:
1AAAAAAA 0BBBBBBB
A = full character 1
B = full character 2
Red’s text)
special command:
1AAAAAAA 1BBBBBBB
A full character 1
B Command byte

(used for

— = — < <> I—1

Voice Bridge

801-855-3326

Free VMBs - 2 Voice BBS Sections - 5 Voice Bridges
Up 1o 8 people on a bidge at once/Daily meetings start around 6pm PST

A good place to meet before you start your evening activities

rebelofold: WUT

55! whaaat

Hi Mom**®

georgemichaels: we're the twitch

HI COoUCH

Llelelelelele

OMFG
devinlock: m
wal lyudrag: HI_MMOM

toastupl=s! MATRIX dear

golten_: WHAT
asduyy: =starto
gadwi nioo: ekt
anddykarate! fdag
tovargent: m
soulvroarn: HA T
lukeskywars=s: P
kidsmirk: heloooo¥®®®s
love_struck_: HUCLS
HI MO

fr anthecaiun: @ i G i O

dor: LOL

Chat

Figure 11 — Twitch chat!

The most important command was EE, cho-
sen very arbitrarily, which meant “transition state.”
The state transition would then toggle between the
TASVideos website and chat interface. Also worth
noting is that any character with a value of 00 was
considered a null character and was not displayed
for synchronization purposes.

3.15 The Website

The website itself is not very complicated, rather
just interesting to mention to take advantage of
mode 0x03 which allowed us to render a 256—color
image, rather than the standard 16-color images
from the prior section. The only caveat was that we
had to make a quick tool to remove duplicate tiles to
optimize the tile data to fit in VRAM. Background
colors were controlled by tweaking the palette data
rather than the image itself, as the SNES is very
poor at manipulating raw tile data due to its planar
pixel format.

3.16 Outside of the SNES

The bot was connected to the console through the
controller ports and a single wire going to the reset
pin on the expansion board, meaning that from an

22nttps://github. com/TheAxeMan301/PptIrcBot

external perspective the hardware was completely
unmodified. The bot itself was connected by a USB
serial interface to a MacBook Pro running Linux.
The source of the button presses being sent to the
bot was in the form of a continuous bitstream repre-
senting the state of all buttons for each frame. Once
the payload was fully written and the Twitch chat
interface was complete the bitstream transitioned
from being pre-created movie content to a bitstream
in the format the chat interface payload needed it
in, with 5-bit and 7-bit encodings for characters and
emoji. This was controlled by the python scripts??
that relied on a script to identify when Red, the
player inside of the Pokémon Red game, said var-
ious things. The script also triggered things that
TASBot, the robot holding the replay device, would
say via the use of espeak, which allowed us to create
a conversation between TASBot and Red.

Finally, as part of the script we predefined pe-
riods where we would “deface” the TASVideos web-
site by changing it to different colors; this worked
by showing an image on the SNES as well as liter-
ally defacing the actual website. Finally, the script
was built with the ability to send commands to a
serial-controlled camera, but truth be told we ran
out of time to test it so we used a bit of stage magic
to pretend like Twitch chat was interacting with the
camera by typing directions to move it, and we had
a helpful volunteer running the camera for us.

3.17 Live Performance

These exploits were unveiled at AGDQ 2015. They
were streamed live to over 100,000 people on Jan-
uary 4th with a mangled Python script that didn’t
trigger the text for Red properly, then again on Jan-
uary 11th with the full payload. The run was very
well received and garnered press coverage from Ars
Technica?® among others and resulted in substan-
tially more interest in TASBot and the art of arbi-
trary code execution on video games than had ex-
isted previously. Most importantly, the TAS por-
tions of the marathon where the exploit was fea-
tured helped raise over fifty thousand dollars di-
rectly to the Prevent Cancer Foundation. Overall,
the project was a resounding success, well worth the
substantial effort that our team put into it.

23Pokémon Plays Twitch: How a Robot got IRC Running on an Unmodified SNES by Kyle Orland

23

4 This PDF is also a Gameboy exploit that displays
the “Pokémon Plays Twitch” article!

The idea for this polyglot is to embed the con-
tents of the previous article in this fine issue of
PoC||GTFO in such a way that it shows on when
played as an LSNES movie. So now you can use
your copy of the journal to exploit your hardware
and read “Pokémon Plays Twitch” on your TV. This
way, we hope to start a tradition of articles being
viewable on the hardware of the article!

LSNES supports two kinds of movie files, which
might better be thought of as input recording files.
The older format is ZIP based and formally speci-
fied, while the new one is binary and custom. The

The binary LSMV format is chunk-based. The
“lsmv” magic must be at offset 0; we can’t have
any appended data. So the PDF header and con-
tent must be added in a dummy chunk early in the
LSMYV, and the ZIP and PDF footer must be added
at the end of the file, in another dummy chunk (see
included diagram).

A clean version of the LSMV file has been sub-
mitted to TASVideos.?* You can play this polyglot
on a modified LSNES with the hybrid emulation
core using BSNES and Gambatte or, if you have
the required hardware, on the real stuff!

new binary format has no official specs, but start- o I oo .
. . . . header up to 1kb
ing a PDF with a ZIP signature would now trigger chunk header tolerated
Adobe’s blacklist—clearly, someone at the company durmmy chunk actual content zIP ﬁlesd
. . . - are parse
must have disliked something about one of our pre- I\ | J[Lobject header bott‘;m-up _
. . (0]
vious releases. So the new, non-ZIP LSMV binary | |l actual content
format is the one that we’ll use. J[-chunk header)| ST S A
actual content
1=l dummy chunk - -
object footer (dummy commentl
The buffers for read and write calls for movie A {_PDF footer
data are straight out of the movie data in memory.
One unintended benefit of the new format is that
it is much easier to write from SIGSEGV or similar Be warned that none of these approaches is triv-
signal handlers. (The memory allocator cannot be ial. We include detailed howtos with the zip con-
trusted.) tents of this issue.?®
1 g g 4
13380[Ys 2 LRORI Y weN o 2 v e NLI012 B tee K01
13380 58+ X R PBYs we NLIOL 3BYs teeooLoo13) s L o01
13380F s 4+ R Y58 ve+ Ro23 s v 1| vs e R
13380p ¢+ L 12 A AL oL f
13381 A% R A% 0123 A LROL 3 AL 12
13382 A% R A% 0123 A LROL 3 aL 1zPokemon Plagss Twitch .
13382BY 4++ L 13 = +¢ s ROL got o +s KL 01 | vss ¢ RizdFor the AGDE ZALIS charits
13382 ¥s v+ LRO127E v ¥R I1ZE S s ¥ 4] mardthan we EKPIDitEd =] chain of
13382y e 12 [y 50 = 2F g ¢ L 1z |vz rees w0l MAomodi fied Mintendo game console
13382F s R A R A ves 4e z|components consisting of o
13382R voa L1 |y wes LROLZ | WeStees LROLE ries ¥l oL AF Ok emon Red Goame Baoy coartridae
13382F 5 e+% (012 fx R f s te LRol 4N o Super Game Bos running in oo
13382 BLO1 [¥s e +¥ 012 flR0L)+ ok oz [SUper Mintendo. He Ifllugged the
13383 f 1 AY 0123 IR0 298 50 ¢ oK latter into custom hardware
13384 AKLRO1 A% 0123 A RO 238 s + + ¥ Enging gz o normal controller.
13384) v 5 ¢+ R 2 By 5t e+ LROL |vsst e» LROE| s +- rol ([P this F-stage exploit, we
13384 ve R 12 | vs s ¥R 23 S H R aAB ESt s ¥ D -:cur*r*uf-ted g _zdve fFile to give
15384l v v o+ 012 | ves + + R 23R v 12| g e w pr3oUdrzelves ZEE Pokemon, swidpped
15354| vs s RO1Z3 a g o0lzfss e+~ ri1iFokemon, dnd tossed items to
13384 's8 '+ LR S5+ WROL G Y ET e LROLZ [vsS c» L ziCONsSEruct o padlogd. Le .
13384F 5 ¢ » ¥ By S+ LROL 9 s e+ R 29pvs ++ % o0 scommitted 9 series of gtrocities
13354 AR I2IR s esn¥ 012 a vs oo+ L eadsing . documented command packets
13385| ¥s8 » ¥ 0120B 5 t++» ¥l 01 9BvsS ++» LR 3 st~ xR adnd ultimatels broke into_the
13386| ¥sS <> ¥ 0123 5 *++= KL 01 3BysS +«» LR 3 s == xR 3ouper Mintendo'=s working REAM,
13386/ v + LRO 29 ¥ + RO ZE St++ LR B s lpt wWhere we wrote our own chot
13386f -5 4+ 1 AL ERY e 13 A LRO 2 L
133860 5 *+ ¥ 01 Bys t s ¥ 012 By ees |RO1 3 8t es ¥R 3 Chat
24

25

http://tasvideos.org/4947S.html

unzip -j pocorgtfolO.pdf pokemon_plays_twitch/sgbhowto.pdf

24

1 0 0 O O L0000 1=

“The Boy’s Electric Toys™

g There have been other electrical experimental outfits on the market thus far, but we do not believe
that there has ever been produced anything that comes anywhere near approaching the new experimental
outfit which we illustrate herewith.

“The Boy’s Electric Toys” is unique in the history of electrical experimental apparatus, as in the
E small box which we offer enough material is contained TO MAKE AND COMPLETE OVER
5 TWENTY-FIVE DIFFERENT ELECTRICAL APPARATUS without any other tools, except a
H screw-driver furnished with the outfit. The box construction
= alone is quite novel, inasmuch as every piece fits into a special
E compartment, thereby inducing the young experimenter to be
1 neat and to put the things back from where he took them. The
u box contains the following complete instruments and apparatus
H which are already assembled :
& Student’s chromic plunge battery,
B compass-galvanometer, solenoid, tele-
E phone receiver, electric lamp. Enough
various parts, wire, etc., are furnished
to make the fo]lowmg apparatus:

11T T TN T

Electromagnet, electric cannon, magnetic
pictures, dancing spiral, electric hammer,
galvanometer, voltmeter, hook for telephone
receiver, condenser, sensitive microphone,
short distance wireless telephone, test stor-
age battery, shocking coil, complete tele-
graph set, electric riveting machine, elec-
tric buzzer, dancing fishes, singing tele-
phone, mysterious duncmg man, electric

g jack, tric figures,
rheostat, erratic pendulum, electric butter-
fly, thermo electric motor, visual telegraph,
etc., etc.

This does not by any means exhaust the list, but
a great many more apparatus can be built actually
and effectually.

With the instruction book which we furnish, onc
hundred experiments that can be made with’ th
outfit are listed, nearly all of these being 111ustrated
with superb illustrations. We lay particular stress
on the fact that no other materials, goods or supplies
are necessary to perform any of the one hundred
experiments or to make any of the 25 apparatus.
Everything can be constructed and accomplished by
means of this outfit, two hands, and a screw-driver.
Moreover this is the only outfit on the market to-day
in which there is included a complete chromic acid
plunge battery, with which each and everyone of the
experiments can be performed. No other source of
current is necessary.

Moreover, the outfit has complete wooden bases
with drilled holes in their proper places, so that all
g7 = \ you have to do is to mount the various pieces by

: means of the machine screws furnished with the set

The outfit contains 114 separate pieces of mate-
rial and 24 pieces of finished articles ready to use
at once.

The box alone is a masterpiece of work on account
of its various ingenious compartments, wherein every
piece of apparatus fits.

Among the
finished mate-
rial the follow- « s £ .
— i o The Livest Catalog in America
included: Our blg, new electrical cyclopedia No. 19
Chromic salts for battery, 1amr socket, bottle of mercury, core wire (two different lengths), a is walting for you. Positively the most com-
bottle of iron filings, three spools of wire, carbons, a quantity of machine screws, flexible cord, two &l:gw WL’;;‘? and electrical catalog in print
wood bases, glass plate, paraffine paper, binding posts, screw-driver, etc., etc. The instruction book a8 e, e "‘:nfg: m""em “m'"“’"".r 580
i8 8o clear that anyone can make the apparatus without trouble, and besides & section of the instruc- ".. on w|,,|., Tolography.™.
tion book is taken up with the fundamentals of electricity to acquaint the layman with all important coupons for our 160-page ‘I‘nl’n Wireless
facts in electricity in a simple manner. Course g‘ 20 lessons. FEEE Cyclo-
All instruments and all materials are well finished and tested before leaving the factory. s xm{ l: 1b_l, B:.nw-n{ﬂxc:v&‘:
We guarantee satisfaction. Lé ” Naw, bafore you turn Page write
We wish to emphasize the fact that anyone who goes through the various experiments Az,“:":“':n%,‘“&u ;mmxisn cts.
will become proficient in electricity and will certainly acquire an electrical education whhh stamps to coyer mal charges. md me
cannot be duphcaled except by frequenhn an_electrical school for some months.] (S'alopedh i# yours by retirn m
e size over all of the outfit is 14 x 9 x 2. Shipping weight, 8 1bs/; H 01
E’ ELECTR MPOR"NG Co.
No. EX2002 ““The Boy’s EI, i "
v’s Electric Toys,”’ outfit as described . . $5. 231 Fnllon Slleef. Ne\l Ywi ‘Gly

11 T O L 10Ol DD OO OO

ELECTRO IMPORTING CO., 231 F‘ulton St N.Y.

i.ﬂ.l"ﬂllmllllllllﬂllllﬂllllmnlﬂlllIlllﬂlllllllIIﬂIIImIII[IHIIIIIIIlIIHIIWIIIIIII il il

YT Lt T N T T

25

5 SWD Marionettes; or,

The Internet of Unsuspecting Things

Greetings, neighbors! Let us today gather to cel-
ebrate the Internet of Things. We live in a world
where nearly any appliance, pet, or snack food can
talk to the Cloud, which sure is a disarming name for
this random collection of computers we’ve managed
to network together. I bring you a humble PoC to-
day, with its origins in the even humbler networking
connections between tiny chips.

5.1 Firmware? Where we’re going,
we don’t need firmware.

I've always had a fascination with debugging inter-
faces. I first learned to program on systems with
no viable debugger, but I would read magazines in
the nineties with articles advertising elaborate and
pricey emulator and in-circuit debugger systems.
Decades go by, and I learn about JTAG, but it’s
hard to get excited about such a weird, wasteful, and
under-standardized protocol. JTAG was designed
for an era when economy of silicon area was critical,
and it shows.

More years go by, and I learn about ARM’s Se-
rial Wire Debug (SWD) protocol. It’s a tantalizing
thing: two wires, clock and bidirectional data, give
you complete access to the chip. You can read or
write memory as if you were the CPU core, in fact
concurrently while the CPU core is running. This is
all you need to access the processor’s I/O ports, its
on-board serial ports, load programs into RAM or

by Micah Elizabeth Scott

flash, single-step code, and anything else a debug-
ger does. I took my first dive into SWD in order to
develop an automated testing infrastructure for the
Fadecandy LED controller project. There was much
yak shaving, but the result was totally worthwhile.

More recently, Cortex-MO microcontrollers have
been showing up with prices and I/0O features com-
petitive with 8-bit microcontrollers. For example,
the Freescale MKEQ4Z8VFK4 is less than a dollar
even in single quantities, and there’s a feature-rich
development board available for $15. These micros
are cheaper than many single-purpose chips, and
they have all the peripherals you’d expect from an
AVR or PIC micro. The dev board is even compat-
ible with Arduino shields.

In light of this economy of scale, I'll even con-
sider using a Cortex-MO0 as a sort of I/O expander
chip. This is pretty cool if you want to write micro-
controller firmware, but what if you want something
without local processing? You could write a sort
of pass-through firmware, but that’s extra complex-
ity as well as extra timing uncertainty. The SWD
port would be a handy way to have a simple remote-
controlled set of ARM peripherals that you can drive
from another processor.

Okay! So let’s get to the point. SWD is neat,
we want to do things with it. But, as is typical
with ARM, the documentation and the protocols are
fiercely layered. It leads to the kind of complexity
that can make little sense from a software perspec-
tive, but might be more forgivable if you consider
the underlying hardware architecture as a group of
tiny little machines that all talk asynchronously.

The first few tiny machines are described in the
250-page ARM Debug Interface Architecture Spec-
ification ADIv5.0 to ADIv5.2 tome.?S It becomes
apparent that the tiny machines must be so tiny be-
cause of all the architectural flexibility the designers
wanted to accommodate. To start with, there’s the
Debug Port (DP). The DP is the lower layer, clos-
est to the physical link. There are different DPs for
JTAG and Serial Wire Debug, but we only need to
be concerned with SWD.

We can mostly ignore JTAG, except for the pro-
cess of initially switching from JTAG to SWD on

26nttp://infocenter.arm.com/help/index. jsp?topic=/com.arm.doc.ihi0031c/index.html

26

SWCLKTCK

(
77 \ f

0 1 1 1 1 O

SWDIOTMS _/

At least 50 clocks
With SWDIOTMS
HIGH

{(
| A U | .

0

JTAG-to-SWD sequence

v

11 1 1 0 O 1 1 1

At least 50 clocks

With SWDIOTMS
HIGH

Figure 12 — JTAG-to-SWD sequence timing

systems that support both options. SWD’s clock
matches the JTAG clock line, and SWD’s bidirec-
tional data maps to JTAG’s TMS signal. A magic
bit sequence in JTAG mode on these two pins will
trigger a switch to the SWD mode, as shown in Fig-
ure 12.

SWD will look a bit familiar if you’ve used SPI
or I12C at all. It’s more like SPI, in that it uses a
fast and non-weird clocking scheme. Each proces-
sor’s data sheet will tell you the maximum SWD
speed, but it’s usually upwards of 20 MHz. This
hints at why the protocol includes so many asyn-
chronous layers: the underlying hardware operates
on separate clock domains, and the debug port may
be operating much faster or slower than the CPU
clock.

Whereas SPI typically uses separate wires for
data in and out, SWD uses a single wire (it’s in
the name!) and relies on a “turnaround” period to
switch bus directions during one otherwise wasted
clock cycle that separates groups of written or re-
turned bits. These bit groups are arranged into tiny
packets with start bits and parity and such, using
turnaround bits to separate the initial, data, and
acknowledgment phases of the transfer. For exam-
ple, see Figures 13 and 14 to execute read and write
operations and for all the squiggly details on these
packets, the tome has you covered starting with Fig-
ure 4-1.

These low-level SWD packets give you a
memory-like interface for reading and writing reg-
isters; but we’re still a few layers removed from the
kind of registers that you’d see anywhere else in the
ARM architecture. The DP itself has some registers
accessed via these packets, or these reads and writes
can refer to registers in the next layer: the Access
Port (AP).

The AP could really be any sort of hardware that
needs a dedicated debug interface on the SoC. There
are usually vendor specific access ports, but usually

27

you're talking to the standardized MEM-AP which
gives you a port for accessing the ARM’s AHB mem-
ory bus. This is what gives the debugger a view of
memory from the CPU’s point of view.

Each of these layers are of course asynchronous.
The higher levels, MEM-AP and above, tend to
have a handshaking scheme that looks much like
any other memory mapped I/O operation. Write
to a register, wait for a bit to clear, that sort of
thing. The lower level communications between DP
and AP needs to be more efficient, though, so reads
are pipelined. When you issue a read, that trans-
action will be returning data for the previous read
operation on that DP. You can give up the extra
throughput in order to simplify the interface if you
want, by explicitly reading the last result (without
starting a new read) via a Read Buffer register in
the DP.

This is where the Pandora’s Box opens up. With
the MEM-AP, this little serial port gives you full ac-
cess to the CPU’s memory. And as is the tradition
of the ARM architecture, pretty much everything is
memory-mapped. Even the CPU’s registers are in-
directly accessed via a memory mapped debug con-
troller while the CPU is halted. Now everything
in the thousands of pages of Cortex-M and vendor-
specific documentation is up for grabs.

Clock "I LU LTI UL U Uy L
RnW ACKJ0:2]
| /_-/\ﬁ ((
4 o ~ 1)
g E 1|A[2:3] g § 5|E|1o|o RDATA[0:31] gé
Wire driven by: Host Target

Figure 13 — Serial Wire Debug successful read operation

Clock " MUy iy

RnW ACK[0:2]

| " "

W [y 27

g E 0|A[2:3] § § E Elr|o|ofg WDATA[0:31] :%

{(

) . 7
Wire driven by: Host Target Host

Figure 14 — Serial Wire Debug successful write operation

5.2 Now I’m getting to the point.

I like making tools, and this seems like finally the
perfect layer to use as a foundation for something
a bit more powerful and more explorable. Combin-
ing the simple SWD client library I'd written earlier
with the excellent Arduino ESP8266 board support
package, attached you’ll find esp8266-arm-swd,?”
an Arduino sketch you can load on the $5 ESP8266
Wi-Fi microcontroller. There’s a README with
the specifics you'll need to connect it to any ARM
processor and to your Wi-Fi. It provides an HTTP

27unzip pocorgtfol0.zip esp8266-arm-swd.zip

GET interface for reading and writing memory.
Simple, joyful, and roughly equivalent security to
most Internet Things.

These little HTTP requests to read and write
memory happen quickly enough that we can build
a live hex editor that continuously scans any visible
memory for changes, and sends writes whenever any
value is edited. By utilizing all sorts of delightful
HTML5 modernity to do the UI entirely client-side,
we can avoid overloading the lightweight web server
on the ESP8266.

This all adds up to something that’s I hope could

the “CA”, or write,
Division
Chisholm-Ryder Co., Inc.

“CA” BUMPER MOUNTING
FITS ANY CAR

Mount Your Mobile Antenna without Drilling or Marring!
Even the massive bumpers of new 1955 cars can be outfitted
with Premax’s newly improved “CA” mobile antenna mounting,
without spoiling chrome finish. Mounting includes extra chain
links and braided copper wire ground lead. Ask your dealer for

PREMAX PRODUCTS

5581 Highland Avenue, Niagara Falls, New York

Here's Why!

There’s no drilling
or damage to Bumper
or splash-pan neces-
sary. “CA” Bumper
Mounting is fully ad-
justable with 9 links
of chain. Add or re-
move links as needed!

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Turn the LED
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400ff000=0x00100800"> red ,
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400ff000=0x00200800"> green ,
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400ff000=0x00300000"> blue ,
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400£f£f000=0x00200000"> cyan ,
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400£ff000=0x00100000"> pink ,
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400£ff000=0x00000000"> whiteish , or
<a is="swd—async—action" href="/api/mem/write?0x40048008=0&0x400ff014=0x00300800&0
x400£ff000=0x00300800"> off
</1li>

Now halt the CPU and let’s have some
scratch RAM:
<p>
<swd—hexedit addr="0x20000000" count="32"></swd—hexedit>
</p>
</1li>

<a is="swd—async—action" href="/api/mem/write?0x20000000=0x22004b0a&.=0x4a0a601a&.=0
x601la4b0a&.=0x4a0b4b0a&.=0x4b0b6013&.=0x2b003b01&.=0x2380d1fc&.=0x6013035b&.=0x3b014b07
&.=0xd1fc2b00&.=0x46c0e7f0&.=0x40048008&.=0x00300800&.=0x400ff014&.=0x00200800&.=0
x400ff000&.=0x00123456&.=0x7fffffbc&.=0x00000001 ">
Load a small program

into the scratch RAM
</1li>

 Set the program
counter
()
to the top of our program
</1li>

The PC <i>sample</i> register ()
tells you where the <i>running</i> CPU is
</ li>

 Let the CPU
run!
(or try a
single step)

While the program is running, you can modify its delay value:

</ li>

Figure 15 — Single Wire Debug from HTML5

29

be used for a kind of literate reverse engineering and
debugging, in the way Knuth imagined literate pro-
gramming. When trying to understand a new plat-
form, the browser can become an ideal sandbox for
both investigating and documenting the unknown
hardware and software resources.

The included HTML5 web app, served by the Ar-
duino sketch, uses some Javascript to define custom
HTML elements that let you embed editable hex
dumps directly into documentation. Since a register
write is just an HTTP GET, hyperlinks can cause
hardware state changes or upload small programs.

There’s a small example of this approach on the
“Memory Mapped I/O” page, designed for the $15
Freescale FRDM-KE04Z board. This one is handy
as a prototyping platform, particularly since the I/O
is 5V tolerant and compatible with Arduino shields.
Figure 15 contains the HTML5 source for that demo.

This sample uses some custom HTML5 ele-
ments defined in /script.js: swd-async-action,
swd-hexedit, and swd-hexword. The swd-async-
-action isn’t so exciting, it’s really just a spe-
cial kind of hyperlink that shows a pass/fail re-
sult without navigating away from the page. The
swd-hexedit is also relatively mundane; it’s just
a shell that expands into many swd-hexword ele-
ments. That’s where the substance is. Any swd--
hexedit element that’s scrolled into view will be
refreshed in a continuous round-robin cycle, and the
content is editable by default. These become simple
but powerful tools.

5.3 Put a chip in it!

While the practical applications of esp8266-arm-swd
may be limited to education and research, I think
it’s an interesting Minimum Viable Internet Thing.
With the ESP8266 costing only a few dollars, any-
thing with an ARM microcontroller could become
an Internet Thing with zero firmware modification,
assuming you can find the memory addresses or
hardware registers that control the parts you care
about. Is it practical? Not really. Secure? Defi-
nitely not! But perhaps take a moment to consider
whether it’s really any worse than the other so-
lutions at hand. Is ARM assembly and HTML5
your kind of fun? Please send pull requests. Happy
hacking

ZORK USERS GROUD

The Zork Users Group is an independent group licensed by Infocom to provide support to those playing inlerlog\c‘ i |
games. Our sole purpose is to enhance the enjoyment of games developed by infocom, Inc.; however, we are a
separate_entity not afm\a_ted with Infocom

|nvisiCIuesT e Over 175 hints (and answers) to over 75 questions about Zork.y grogressmg from a gentle nudge in
the right direction to a full answer — printed in invisible ink (developing marker included) with illustrations throughout
You develop only what you want to see. Also includes sections listing all treasures, how all points are earned, and
some interesting Zork trivia. InvisiClues for Zork Il available after August 1, 1982

Guide Maps for Zork | & Zork Il — These are beautifully illustrated 11" x 17" fold-out maps printed in brown
and black ink on heavy parchment-tone paper. All locations and passageways are shown. Simple directions make the
maps useful guides for your journey through the Empire; however, they reveal secrets that would otherwise require you
to solve various problems, and may give away more than you wish to know early in the game

- . M
Blueprint for Deadline — Architectural drawings of the Robner mansion and grounds: a useful reference and
possibly some clues

Full Color Poster for Zork | — To commemorate your perilous journey, this full-color poster attractively
illustrates the world of the Great Underground Empire - Part |. This 22" x 28" poster is printed on glossy paper and is
suitable for framing. It comes rolled in a heavy mailing tube to avoid folding [

We also provide a personal hint service for the games .t

w!
Use our handy order form (reverse) or check [J if you wish us to send you more details. %

30

HERE YOU LEARN BY DOING

The Only Way to Learn to be the only men L]:;:\urc fully 41'1121",i~ vou ":ill want to jui‘n the New York

< . fied to satisfy EVERY demand of the Electrical, School. It will be an advantage

EleCt"lClty Electrical Profession. to you to start at once. Hurry and send

T'he only way you can becor X- At this “Learn by Doing” School a man for our 64-page book which tells you all

pert is by doing the very work unc acquires the art of Electrical Drafting about the school, with pictures of our

petent instructors, which you will be called the best business method and experience equipment and students at work, and a

upon to do late r words in Electrical Contracting, together with full description of the course. You need

l L >thod of the the skill to install, operate and maintain send for this book. It is

all systems for producing, transmitting yone interested in elec-

of actual practice properly and using electricity. A school for Old y. It will not obligate you to send

directed rth more to a man than and Young. Individual instruction. for it. Send the coupon or write us a

years and years of book study. Indeed. letter. But write us now while you are

Actual Practice is the only training of And Now thinking about the subject of electricity.

value, and gradwates of New York Elec- If you have an ambition to make a

trical “School have proved themselves name for yourself in the electrical field School open to visitors 9 A. M. 1o 9 P. M.

TELEPHONE

)” @ Oy ' N\ 57800 ATION
" SHOP 1 : :

‘_’) \ L 0\) [oeecr coerent
| 570cK ROOM | Ll 4 = J N eracrice

New York Electrical School
29 W. 17th St., New York, N. Y.

1

Please send FREE and without obligation to I B ECT
1 29 W.I7THST
1

NEW YORKQ N- Yl%

me your 64-page book.

INOME oareriten s s 4 s SHpaatingss s 65 sosmmmiiiee e

31

6 Reversing a Pregnancy Test; or,

Bitch better have my money!

The adventure started like most adventures do—
in a dark bar near a technical institute over pints
of TPA. An serial entrepreneur plied me with com-
pliments, alcohol and assurances of a budget wor-
thy of my hourly rate to take an off-the shelf device
and build a sales-pitch demo in support of his natal
company’s fund-raising and growth plan. The goal
was to take approximately zero available fabrication
resources other than myself and spend a couple of
months to make a universally approachable, easy to
use demounstration prototype for a (now utterly de-
funct) startup’s flow strip technology with a hack-a-
thon patented Internet-of-Things interface. The tar-
get was an entry straight out of PC Magazine’s The
Secret World of Embedded Computers, the thing no
active neighbor should be without—a handy-dandy
off the shelf CVS digital pregnancy test.

(Lm\

(w\

ok [iivocken or | e
9
) I
ot te b
&3 g o\

L ¢
/
V2N

ks

oo

6.1 Fast, Cheap, and Easy

Head on down to your local pharmacy, and virtually
every store will carry a nifty brand of digital preg-
nancy tests. All of these tests are basically iden-
tical (inside and out), and the marketing strategy
is simple. Humans are bad at reading analog in-
puts, so when your time comes, let technology ease
your mind whether you, the user is stressed to the
breaking point trying to get pregnant or if you're in
the boat of desperately hoping you're sterile. “Oh
god, it’s been three seconds. Or minutes? Wait?

by Amanda Wozniak

What happened to space time. Is there one blue
line? Two? I feel faint. Fish? Fuck! I'm pregnant
with mutant fish babies.”?8

Now, it doesn’t matter which brand you buy for
this exercise—as far as I can tell, they're all based
on the same two-chip solution built around a Holtek
HT48C06 microprocessor. And you can guess at the
function without cracking the case — just go buy one
(for extra bonus points, look as underaged as possi-
ble) and look at the test strips themselves.

Remember, this OTS technology is extra cool be-
cause back in the day, instead of peeing on a stick,
women suspected of pregnancy?? had to have their
urine injected into a rabbit in order to assess preg-
nancy before the onset of “the quickening.” If you
think it’s hard telling the difference between ‘+’
and ‘—’, you definitely haven’t had to divine your
future livelihood from the appearance of leporid en-
trails. And for extra bonus by the Theory Of Cyber-
Extension, every time you use a digital pregnancy
test, a cute bunny Tamagotchi is saved from certain
death.

6.2 Basics of the Test

Each strip has an absorbent area (that you pee on)
and a clear window where the test results show up.
One stripe is a control stripe that ‘fires’ (changes
color) in any liquid from water to bourbon, and the
other one is a test stripe that only fires when suffi-
cient concentrations of the hormone hCG are present

28The mutant fish baby thing is kind of true according to developmental biology, but that’s not really our focus today.
29 Fun fact: Eve was the first hacker and Cain was her first 0-day. Humankind is the ultimate Trojan. Since Cain was such
a dick in the Biblical sense, the hacking community has carried his mark of social stigma until this very day.

in the fluid sample. (hCG stands for Human Chori-
onic Gonadotropin, named because scientists snicker
at words like “gonad.”) You can use the strips with-
out the digital tester, because all you're being sold
is a device that will load in one of the basic strips,
and monitor the control and test stripes, and return
three results: ERROR, NOT or PREGNANT. It
turns out that $50 and getting at least one pregnant
woman to pee on a test strip can end up for an en-
tertaining couple of evenings at the old workbench.

Following these instructions, with enough time,
patience and abstinence, you’ll be able to make your
own legitimate-looking pregnancy test that works on
men and women alike! Or jazz it up to say “HI MOM”
in no time.

6.3 Teardown

To open the case of a digital pregnancy test (DPT),
take a nickel or quarter, place it in the detent in the
injection molded case, and gently twist. The model
of DPT I did most of my work with was the generic
“CVS Clear Results,” test — the mechanical specifics
may vary from brand to brand, but the nicest part of
the cheap injection-molded plastic is that the shell
parts are universally thin-walled and toleranced to
snap-fit together, which makes it easy to snap them
apart without visibly damaging the case.

Inside that case, there will be a circuit board
that has another multi-piece injection-molded as-
sembly of ABS plastic, press-fitted into mounting
holes on the PCB. This is the test strip alignment /e-
jection mechanism.?® For my purposes, I removed
this semi-destructively, by twisting off the retention
pins on the back side of the PCB. I wanted to save

3

Ounzip pocorgtfolO pregpatent.pdf

33

the housing for when I rebuilt the test with my own
internal electronics, to be virtually indistinguish-
able from the stock pregnancy test but with added
entrepreneurial functions. This strategic re-use of
injection molded parts and hard-to-design mecha-
nisms adds that special professional flair to demon-
stration prototypes.

Once you’ve got the holder off, you’ll uncover
an activation switch and the analog optical sen-
sor (made of two photodiodes and three LEDs), a
PLL (used only for its voltage-controlled oscillator)
IC, the aforementioned Holtek HT48C06, a 3V bat-
tery and a custom LCD. You can either look up
the battery type to confirm it’s 3V, or just read
the CE-mark label on the outside of the DPT that
lists the part number, lot data, confirmation that
this test is made by SPD GmbH out of Geneva,
Switzerland (made in China), and that the test runs
on 3V DC. Safety first, kids. Also convenient: if
you peel up this label, you’ll see holes in a pat-
tern of the case that line up with un-tinned pads on
the PCB. These are the calibration and test points
for the Holtek, which means if you prefer firmware
reverse-engineering to hardware reverse-engineering,
you can go fiddle with the insides from the outside.

By the by, that label isn’t tamper-evident. You
can easily replace it. Don’t get any ideas!

6.4 Schematic

Flick the little button, and you’ll see the whole test
light up (with or without a strip). The LEDs strobe,
the LCD thoughtfully blinks its “thinking” icon, and
a scope or DMM will show plenty of pin activity
until the test errors out because you just set it off

ﬁl‘ﬂ
[z
<~
o
@® D
e
x
<

without a valid test strip. I could have started prob-
ing there, but I realized that an optical test requires
a dark environment, and I wanted to bring my test
wires out through the conveniently placed unit-test-
and-programming holes on the case. My ultimate
goal was to test the unit under multiple conditions
to determine the internal logic. That meant making
a schematic.

I don’t enjoy tracing out circuits with dark sol-
dermask, and the DPTs are relatively cheap, so I
gathered up the pinouts for each IC and then did
my physical net trace using graphic design tools.

Step 1. Desolder all components from the PCB.

Step 2: Scrub the pads with solder wick to get
them nice and flat.

Step 3. Using a razor blade or fine-grit sandpa-
per, sand off the soldermask with loving attention
on both sides of the PCB.

Step 4. Scan the PCB with high contrast.

Step 5. Import the scans into an illustration tool
of your choice. Color code the top vs. bottom scans
to match your preferred layout scheme. Drop circles
on the vias—first. Then add the IC and passive pins.

Then add your traces. Use the vias to register the
two images on top of one another for a single layout
trace.

Step 6. Annotate the trace with the reference
designators from an intact PCB. Add your own net
names and pin labels. Use this to build a reference
schematic.

6.5 Let’s Skip the Firmware

Let’s walk through what this sweet little circuit is
up to.

First off, the Holtek micro is always on, albeit
in sleep mode. The battery is sized for the shelf life
of the device plus a couple of uses (three strips ship
with each one). When a test strip is placed in the
tester, it mechanically triggers the switch which a)
flags an interrupt to the microcontroller to wake it
up out of sleep mode and b) enables power to the
PLL and sense circuitry that would not otherwise
be powered. If you remove the test strip mid-test,
it cuts power to the PLL and the micro will error
out, making it a bit of a pain to work with. Meh,

PRIt

Ca57C - PP
1
57C - PP

AT é

o

o P oo e 16
v PR
ot ey =
— J[FF 2 o fl
& Pas PA 3 2 o e
o [THE—HE EE . ¥ ;
[—] e no iz & e w s ne
PAO PA7 e on]
F— T2 g N T 4] veoout siGN
E—— m s 10 - &ND c
3 | ee osce [N e g ! s Fez
F—— Ia o peusz oscr i T NH
D7} peon] g | 2
Sy P b & o [o
s i [
s PCOMINT PCHTNA VCON
HT8C06
GND

34

meh, power-saving feature and fault reporting dur-
ing foreseeable misuse.

Once all supplies are up, the Holtek samples the
state of the optical sensor four times a second for
twenty iterations, averaging the samples. In order
to sample the test strip, the Holtek drives the LEDs
and then reads back the output state of the photode-
tector, using the voltage-controlled-isolator (VCO)
sub-function of that phase-lock-loop IC. The role
of the VCO is to convert the analog voltage from
the photodetector into a square wave for easy edge
counting. Higher voltage implies a higher frequency
of edges. Because the micro controls the LED exci-
tation timing, it can easily tell by edge counts what
color test strip the LEDs might be illuminating. It’s
pretty nifty.

Because T wanted to build new electronics to
fit inside the case of the original DPT and repro-
duce a function similar to the original hardware and
firmware, I dove into the deeper specifics of how the
DPT detects whether one or two blue stripes show
up in that plastic clear-view window. The secret is
stereoscopic vision enabled by time-division multi-
plexing and the physical layout of the optosensor.
The three LEDs are interdigitated with two parallel
photodiodes that are the base current sources in a
PNP common emitter amplifier (D4, D5, Q2). The
Holtek enables each of the 3 LEDs (D1, D2, D3) se-
quentially using a 25% LOW duty cycle waveform
at 10kHz. The LEDs are strobed in a round-robin
fashion and the Holtek samples the result via the
VCO.

When any one of the three LEDs is strobing, the
induced current in the photodiode causes the filter
cap on the output of Q2 to charge. The LED’s light
causes charging, while discharging occurs while the
LED is off. Because the Holtek excites the LEDs
intermittently, the output of the photodetector is a
sawtooth wave. The period of the sawtooth is the
LED drive interval, while the peak and trough of
the sawtooth wave correspond to the colorimetric
intensity of the test stripe that appears and/or the
amount of mis-alignment between the photodetector
and the LED array.

But how does this produce stereoscopic vision,
you ask?

For the same background test strip, when D1 is
on, the sawtooth peak-to-peak amplitude will be dif-
ferent than when D3 is on, giving the sensor some
ability to resolve spatial light sources. Because the
LEDs are independently addressable, it also means

35

that the Holtek can discriminate between a colored
stripe hanging over D5 (stripe #1) versus one hang-
ing over D4 (stripe #2). Also, all apologies for
the fact that the reference designator order for the
diodes makes no physical sense. It’s not how I'd de-
sign the board, but it apparently took eight revisions
for the manufacturer to get this far.

6.6 Schrodinger’s Rabbit

Okay, so if you're pregnant, it works like this.

Just kidding, folks—here’s what the DPT is doing.

Photodetectors Test Stripe

D3 D1 D2 ST1 ST2
PREGO L H L | CNTRL PREGO
CNTRL L H H | CNTRL
ERROR H H L PREGO
BLANK H H H

Remember that a high PD voltage implies more
edges counted by the Holtek per excitation cycle.
The Holtek uses this and sequencing to tell if you're
pregnant. Based on the chemistry of the test stripe,
the test expects the CNTRL stripe to fire first.
If only the CNTRL stripe fires—congratulations,
you aren’t pregnant! Again, due to chemistry, the
PREGO stripe ought to always fire second, if at all.
If the stripes fire out of order, that’s an error. If the
PREGO stripe fires but the CNTRL stripe doesn’t,
that’s an error. If no stripe fires, that’s an error.

The factors that contribute to setting the DE-
TECT vs. NO-DETECT threshold for “how many
edges do I expect to count if the rabbit died” are
(1) the distance from each of the three LEDs to each
of the two sensors, (2) the intensity of the LEDs,
(3) the color of the LEDs (as that corresponds to
the sensitivity of the sensors for a given wavelength
of light), (4) the placement of the stripes (if they
appear) with respect to the two photodiodes, and
(5) the color of the stripe and the saturation of the
stripe. Because process controls on LEDs are fuck-
ing horrible, each test has to be individually cali-
brated after assembly.

But that’s good news for us!

6.7 Hands-On Hacking

Let’s be honest, you don’t want to come up with
a new set of guts to shove into the case of a digi-
tal pregnancy test relabeled 0xBEEF and OxCAFE for
maximum entertainment and confusion to potential
investors! You just want to have fun with the avail-
able raw materials that God and your local drug-
store have provided.

Each element of the LCD for the digital preg-
nancy test is custom, just like an old Tamagotchi.
That means one pin polarizes the layer with the
test logo artwork on it. A second layer covers “SEE
LEAFLET” for reporting error states, a third conveys
“NOT” and a fourth, “PREGNANT.” A given layer is ac-
tive when the phase of the drive pin is 180 degrees
out of phase with the COMMON pin.

So, let’s go through the pins that make this hap-
pen.

LCD Pin Image
Common
“NDT??
“PREGNANT”
“SEE LEAFLET”
Logo

Tt W N -

= See leaflet

s

L] |
Pregnant h | Not
= I

Pin 1 is the rightmost pin if you’re looking at the
LCD face and the pins are at the top of the pack-
age, opposite the reference designator. Make sure
to not just short pins—you actually have to lift and
move any pins you might be interested in swapping
around. Cut a wire here, tack in a jumper there.
Mix and match, and get ready to have a ball! Dance
a jig! I mean, shoot, a fella could have a pretty good
weekend in Vegas with all that.

At the time I was doing this work, the Holtek
micro wasn’t available for purchase from Digikey or
Mouser, so in a fit of intellectual incuriosity, I didn’t

36

bother to crack it. Outcome: I can’t give you any
information on its internals other than what I've in-
ferred from reverse-engineering the rest of the cir-
cuit. I'd love to see it done, though—just because
the programming physical interface is obfuscated in
the primary datasheet doesn’t mean it’s impossible.
If T were doing this twice, I'd start with the ICE.
The correct ICE tool for the job, assuming you're
into that, is the CICE48U000006A. In the interest
of speed, I based my redesign on a PIC16F1933 and
a character LCD that fit nicely in the same window
as the original.

The demo worked, but I never got paid. So,
demo code and hardware design files are available
for any neighbor who wants to buy me a beer.
Cheers!

w0z

Program Your Own EPROMS
8 $99.50 | "amense

PLUGS INTO USER PORT. :E::.

NOTHING ELSE NEEDED. o e

EASY TO USE. VERSATILE. {]

@ Read or Program. One byte or L] RSV

32K bytes!

OR Use like a disk drive. LOAD,
SAVE, GET, INPUT, PRINT, CMD,
OPEN, CLOSE—EPROM FILES!
Our software lets you use familiar BASIC commands to
create, modify, scratch files on readily available EPBQM
chips. Adds a new dimension to your computing capability.
Works with most ML Monitors too.

o Make Auto-Start Cartridges of your programs.

e The promenade™ C1 gives you 4 programming voltages,
2 EPROM supply voltages, 3 intelligent programming
algorithms, 15 bit chip addressing, 3 LED's and NO
switches. Your computer controls everything from software!

e Textool socket. Anti-static aluminum housing. ‘

0
T
g
C
G
E
.
g

e EPROMS, cartridge PC boards, etc. at extra charge.
e Some EPROM types you can use with the promenade™

462732P 27128 5133 X2816A"
gg?g %;33% 564 27256 5143 ZZ;S} gP'
2716 27C32 2764 68764 2815;
27C16 2732A 27C64 68766 2816

*Dencles electncaky sraseabl types

o
e

Call Toll Free: 800-421-7731
In California: 800-421-7748

JASON-RANHEIM

580 Parrott St., San Jose, CA 95112

Your Rig is only as effective as the Antenna you tie it to!

Out of ANTENNA ENGINEERING LABORATORIES,
where Radiation experts and Scientists have
developed the E.D.* principle for Military,
Commercial and Marine use, comes a

RADICALLY NEW
ALL-BAND “E.D.”

RO BO'I'

sKYHook!

AMATEUR

v' 37 @ This New, All-band Antenna, precision-
80 THRU 10 MTRS manufactured by ANTENNA ENGINEERING
* %k COMPANY, does exactly what has long been

V-72 considered a virtual IMPOSSIBILITY.®

80 THRU 10 MTRS

V-70%* Do you want
80 THRU 10 MTRS

**USING OUR
SB-75A UNIT AUTOMATIC IMPEDANCE-MATCHING on EVERY BAND
AUTOMATIC Radiation-pattern Control

R/U;%MATIB Colinear Array on 15 and 10 meters

AUTOMATIC all-band coverage including Novice, C.D.
& MARS

ALL with maximum operational EFFICIENCY and
convenience

Then YOU want—and can NOW HAVE—your CHOICE of a
VARIETY OF MODELS of "E.D"’ All-Banders which have been

DESIGNED for AMATEUR SERVICE
by Antenna Scientists

DEVELOPED for HAMS at the
A.E.C. ANTENNA LABORATORY

PRECISION-MANUFACTURED for Quality
Control at the A.E.C. FACTORY.

SOOOOO

For Ham Radio at its BEST on your Xmtr & Rcvr
For a THRILL as New & Potent as an "H” bomb
For the TOPS in operating efficiency & convenience

WRITE US FOR DETAILS, LITERATURE AND PRICES

Patents ATTENTION AMATEUR RADIO CLUBS! If you would like one of our Repre-
Pending sentatives to discuss the vitally-important subject of Amateur Antennas,
their problems and how they can be solved, write us for an appointment to

o

*Electro-magnetic
Decoupling

address your Members. o

ANTENNA ENGINEERING COMPANY

5021 WEST EXPOSITION BLVD.,LOS ANGELES 16, CALIF.
TELEPHONE: REpublic 4-7807

37

Peeks,Pokes and Pirates

Disk Layout Common Code Obfuscation

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex). Apples have a built-in “monitor” and naive disassembler.
The format of each track is disk-specific. Most disks split each track Confusing this disassembler is not hard!

into 16 “sectors,” but older disks use 13 sectors per track. Some

games use 12, 11, or 10. Newer games can squeeze up to 18 Self-modlfylng code

sectors in a single track! Just figuring out how data is stored on disk

can be a challenge. BB03- 4E06 BB LSR $BB06 ~—modifies the next instruction

BBO6- 71 6E ADC ($6E),Y
BBO08- 0A ASL

DiSk c0ntr0| BB09- BB 2772

By the time $BB06 is executed...

Disk control is through “soft-switches,” not function calls:

$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3) BB03- 4E06 BB LSR $BB06
$C088,X turn off dr!Ve motor BB06- 38 SEC ~—the code has changed!
$C089,X turn on drive motor BB07- 6E OABB ROR $BB0OA

$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)

(X = boot slot x $10) Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
- AEB7- 8CECB7 STY $B7EC
Disk Boot AEBA- 85 DEY
AEBB- 8C F4B7 STY $B7F4
A disk is booted in stages, starting from ROM: AEBE- 88 DEY

$C600 ROM finds track 0 and reads sector 0 into $800

$0801 RAM re-uses part of $C600 code to read more sectors
(usually into $B8600+)

$B700 RAM uses RWTS at $B800+ to read rest of disk

— AEBF- FO 01 BEQ $AEC2 <Y =0 here, so this branches...
-~ AEC1- 6C8CFO JMP ($F08C)

AEC4- B7 77?7

AEC5- 8CEBB7 STY $B7EB

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

AEBF- FO0 01 BEQ $AEC2

AEC1- 6C

AEC2- 8CFOB7 STY $B7F0 <—..to here (JMP is never executed)
AEC5- 8CEBB7 STY $B7EB

Prologue And Epilogue Manual stack manipulation
Many protected disks start with DOS 3.3 and change prologue/ 0800- A9 51 LDA #$OF < push address 1o stack ($OFFF)
epilogue values. Here's where to look: 0802- 48 PHA
Ox read write Ox read write 0803- A9 8E LDA #$FF
_ _ 0805- 48 PHA
D5 $B955 $BC7A D5 $B8BE7 $B853 0806- 205D 6A JSR $080C = call subroutine (also pushes to stack)
prologue AA $B95F $BC7F prologue AA $B8F1 $B858 0809- 4C0008 JMP $0800
/ 96 $B96A $BC84 / AD $B8FC $B85D 080C- 68 PLA ~<— remove address pushed by JSR
ADDRESS —M8Mm ™ DATA 080D- 68 PLA
\ DE $B991 $BCAE \ DE $B935 $B89E 080E- 60 RTS ~—"return” to $OFFF+1 = $1000
epilogue AA $B99B $BCB3 epilogue AA $B93F $BBA3
EB - $BCB8 EB - $B8A8 JMP at $0809 is never executed! Execution continues at $1000.
Know Your Tools Undocumented opcodes
: 0801- 74 222 <~ huh?
Every pirate needs: 0802- 4CB01C JMP $1CBO
- a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy Il Plus, Nibbles Away, Locksmith) $74 is an undocumented 6502 opcode that does nothing, but takes a
-a SECTOR EDITOR for searching, disassembling, patching one-byte operand. Here is what actually executes:
sector-based disks (Disk Fixer, Block Warden, Copy Il Plus)
- a DEMUFFIN TOOL for converting disks to a standard format 0801- 74 4C DOP $4C,X
(Advanced Demuffin, Super Demuffin) 0803- BO1C BCS $0821 <—actually a branch-on-carry (not a JMP)
-a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher) JMP at $0802 is never executed!

to deprotect
and preserve

38

7 A Brief Description of Some Popular Copy-Protection Techniques

on the Apple |[Platform

i’qpple IL

page
7.9 Write-protection 44
7.10 Sector-level protections 44
7.11 Track-level protections 58
7.12 Illegal opcodes 62
7.13 CPU bugs 62
7.14 Magic stack values 63
7.15 Obfuscation 63
7.16 Virtual machines 67
7.17 ROM regions 68
7.18 Sensitive memory locations 68
7.19 Catalog tricks 71
7.20 Basic tricks 72
7.21 Rastan 73

7.1 Ancient history

I've been...let’s call it “preserving” software since
about 1983, albeit under a different name. However,
the most interesting efforts have been recent, requir-
ing skills that I definitely didn’t have until now: I
am the author of the only two-side 16-sector con-
version of Prince of Persia®!, the six-side 16-sector
conversion of The Toy Shop3?, the single file con-
version of Joust, Moon Patrol, and Mr. Do!, as
well as the DOS and ProDOS file-based conversions
of Aquatron, Conan33, The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending
from side B), Mr. Do!, Plasmania, and Swashbuck-
ler, to name a few. I am also the only one to crack
Rastan cleanly on the IIGS, just 25 years late.3*
Yes, I do 16-bit, too.

I’ve spent 13 years writing articles for the Virus
Bulletin® journal. My faithful readers will recog-
nise the style.

3lnttp://pferrie.host22.com/misc/lowlevell4.htm
32nttp://pferrie.host22.com/misc/lowlevells.htm
33nttp://pferrie.host22.com/misc/lowlevell6.htm
34nttp: //www.hackzapple . com/phpBB2/viewtopic.php?t=952
35http://www.virusbtn. com
36nttps://archive.org/details/apple_ii_library_4am

39

by Peter Ferrie (gkumba, san inc)

7.2 Isn’t it ironic

4am3® declined to write this document himself, but
his work and approval inspired me to do it instead.
Since his collection is so varied, and his write-ups
so detailed, they served as a rich source of informa-
tion, which I coupled with my own analyses, to fill
in the gaps for titles that I don’t have. Everyone
knows already that he’s funny, but he’s also quite
friendly and very generous. Together, we corrected
a few mistakes in the write-ups, so I gave something
back. I even consider us friends now, so I think that
I got the better deal.

While I don’t regret writing this paper, I do have
to say that, considering the time and effort that it
required, he probably made a wise decision. . . ;-)

I have tried to associate at least one example of a
real program for each technique, but in Section 7.20
you’ll find some nifty new protection techniques that
I’'ve developed just for this paper.

7.3 Why why why?

Why the Apple |[? It’s because I grew up with the
Apple |[, I learned to code on the Apple |[, I know
the Apple |[.

Why now? Because the disks that were fresh
when the Apple || was current are failing, and if we
do not work to preserve them now, some of the titles
will be lost forever.

This paper is dedicated to anyone who has an in-
terest in helping to preserve what’s left, I sincerely
hope it may help to recognise and defeat the copy-
protection that they have come across.

7.4 Okay, let’s split

We can separate copy protection into two categories;
they are either What You Have or What You Know.
What You Have protections are generally protected
disks, while What You Know protections are gener-

ally off-disk, such as requests to type in a word from
the manual.

What You Know protections come in several
forms. One is an explicit challenge with immedi-
ate effect; you must answer now to continue. An-
other is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes un-
playable later. Yet another is an implicit challenge;
in order to proceed, you should perform an action as
described in the manual, but the game will appear
to be playable without it.

Infocom were infamous for their use of all three:

Starcross issued a direct challenge with immedi-
ate effect, and you could not even leave the second
room without typing the correct co-ordinates from
the star chart.3”

Spellbreaker®® issued a direct challenge with de-
layed effect, along the lines of “name the wizard
who...” Any name from their word list is accepted,
but an incorrect answer results in the player receiv-
ing the wrong key. This key cannot unlock a critical
door much later in the game, causing the character
to be killed instead.

Border Zone made use of an implicit challenge.
It required reading the manual in order to know the
correct words to excuse yourself — Oopzi Dazi!3%—
after bumping into someone, in order to establish
contact with the friendly spy. Failure to make con-
tact within the allotted time ended the game.

RINCESPERS]Y

Brgderbund’s Prince of Persia had a variety of
delayed effects, depending on which of the several
copy protection checks failed. One of them included
crashing immediately before showing the closing
scene upon winning the game. That is, after com-
pleting fourteen levels!

However, the What You Have is perhaps the
more interesting, given the vast number of possi-
bilities.

7.5 Accept your limitations

The first important component that we will con-
sider in the Apple |[is the MOS 6502 or 65C02
CPU. These CPUs have no separation of code and
data. That is, they are a Von Neumann, not Har-
vard architecture. All memory and I/O addresses
are executable, and everything that is not in ROM
is writable, including the stack.

Since the stack is writable directly, it introduces
the possibility of tricks relating to transfer of con-
trol. (§7.14.) Since the stack is executable, it intro-
duces the possibility of hosting code. (§7.18.5.)

The CPU has no prefetch queue, only a sin-
gle prefetched byte of the next instruction (which
is why the minimum instruction execution time is
two cycles—one for the instruction, and one for the
prefetch), as the last stage in the execution of the
current instruction. This introduces the possibility
of self-modifying code, including the next instruc-
tion to execute, because any memory write will have
completed before the prefetch occurs. (§7.15.2.)

7.6 Lay it out for me

The second important component that we will con-
sider in the Apple || is the Disk |[controller. The
Disk][controller is a peripheral which is placed in
a slot. It exposes an interface through memory-
mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface
looks like accesses to $COsX, where s is #$80 plus
the slot times 16, and X is the switch to access.
The Disk || controller runs independently of the
CPU. Once the drive is turned on and spinning the
disk, the drive will continue to spin the disk until the
drive is turned off again. The drive rotates the disk
at a fixed speed—approximately 300 RPM, and five
rotations per second, which works out to be 200ms
per rotation. However, the speed varies somewhat
from drive to drive. For 5.25" disks, the data den-
sity is equal across all tracks. At 300 RPM, each

3Thttp://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
38nttp://gallery.guetech.org/spellbreaker/spellbreaker.html
39mttp://infodoc.plover.net/manuals/temp/borderzo.pdf pl9

40

track holds 50000 bits, which is equal to 6250 8-bit
nibbles.

The data on a disk is simply a stream of bits
to be read. For a 5.25" disk, those bits are usually
gathered into 16 sectors of 256 bytes each, spread
across 35 tracks—256 x 16 x 35 = 143, 360 bytes, or
140kb. When reading from a disk, the Disk || con-
troller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen.
Thus, a full nibble takes the equivalent of 32 CPU
cycles to shift in. After the full nibble is shifted in,
the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cy-
cles, to allow it to be fetched reliably. After those
four CPU cycles elapse, and once a one-bit is seen,
the QA switch of the Data Register will be zeroed,
and then the controller will begin to shift in more
bits. As a result, programmers must count CPU cy-
cles carefully to avoid missing nibbles fetched by the
controller.

The Disk || controller cannot tell you on which
track the head resides. It also cannot tell you on
which sector the head resides. (The Shugart SA400
on which the Disk |[controller is based does have
this capability via index detector circuits, but that
feature was removed from the Disk |[controller to
reduce the cost to manufacture it.) As a result, sec-
tors are usually prepended with a structure known
as the “address field”, which holds the sector’s track
and sector number. The controller does not need or
use this information. Only the boot PROM makes
use of it when requested to read a sector. Beyond
that, the information exists solely for the purpose of
the program which interprets it.

v gap1 | ... 1 gap2, addressfield }sw3| datafield .
L o@oos) | ey o :
' ! ! ' D5 AA 96 ! ' DS AAAD !
! ! ! ! volume ! ! data (342b) !
! ' ' 1 track ' 1 checksum |
. . H 1 sector H 1 DE AA H
! ' ' ! checksum | ' .
: ' : i DEAA R '

disk data

Following the address field that defines a sec-
tor’s location on the disk, there is another structure
known as the “data field”, which holds the sector
body. One reason for the separate address and data
fields is to allow the sector body to be skipped, as

opposed to stored and then decoded, in the event
that the sector address is not the desired one. An-
other reason is that it allows a sector to be updated
in-place, by overwriting the data field only, instead
of rewriting the entire track to update all of the sec-
tors.

(If the sector were a single structure, the CPU
time required to verify that the desired sector has
been found is so long that the write would begin af-
ter the start of the sector body and extend beyond
the original end of the sector, overwriting part of
the following sector.)

Between the sectors are dead space, which can
be filled with a sequence of self-synchronizing val-
ues, timing bits, and protection-specific bytes.

The two structures that define a sector are each
bounded by a prologue and an epilogue. The pro-
logues for the address and data fields are composed
of three values. Two of those values are never used
in the sector body, to distinguish the structures from
the sector body, and the third value is different be-
tween the two structures, to distinguish them from
each other. The epilogues for the address and data
fields are composed of two values. One of those val-
ues is common to both epilogues but never used in
the sector body, to distinguish it from the sector
data.

The Disk |[controller cannot even tell you where
it is within the bitstream. The problem is that
the stream does not have an explicit start and end.
Instead, a specific sequence must be laid on the
track, to form an implicit start. That way, the
hardware can find the start of the stream reliably.
These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector for-
mat, the self-synchronising values are composed of
a minimum of five ten-bit “FF’s. A ten-bit “FF” is
eight bits of one followed by two bits of zero. Self-
synchronising values are usually placed before both
structures that define a sector, to allow synchroni-
sation to occur at any point on the disk. However,
this is not a requirement if read-performance is not
a consideration.? That is, the fewer the number of
self-synchronizing values that are present, the more
data that can be placed on a track. However, the
fewer the number of self-synchronizing values that
are present, the more the controller must read be-
fore it can enter a synchronized state, and then start

407t is a requirement if the data field can be written independently of its address field. Since the write is not guaranteed to
begin on a byte boundary, the self-synchronizing values are required for the controller to synchronize itself when reading the

data again.

to return meaningful data.

Finally, the Disk][controller can write—but not
read reliably—arbitrary eight-bit values. Instead, for
reading each eight-bit value, only seven of the bits
can be used—the top bit must always be set, in order
for the hardware to know when all eight bits have
been read, without the overhead of having to count
them. (See §7.10.15 for a deeper discussion about an
effect made possible by the lack of a counter.) In ad-
dition to requiring the top bit to be set, there should
not be more than two consecutive zero-bits in a row
for the modern drive. (The original disk system did
not allow even that. See §7.10.13 for a deeper dis-
cussion about the effect of excessive zeroess)

)
O AND | ! LDA
| BIT ORA [N LDX
on EOR | | LDY
S v . N,
Y O N, i, . v _l--_—_-—_-::-;l-"RMW
o1 CcMP Ipec NG P Hfrax Txa
E ! ADC 11H15Ex Tnx | 1] Ast LsR TAY TYA
£ ggi((SBC | [oev Tnvfali| RO ROR | plvsx Txs
R e o
: stack
o P B [O STA
+ | SED CLD | vi('| pya prp | STX
v |sercir| : STY
g * [Bvr el JsR BRK| !
= | Beo Bue |+ i |RTS RTI|
£+ |BCS BeC | e
flags NOP

7.7 Copy me, I want to travel

Now that we understand the format of data on the
disk, we consider the ways in which that data can
be copied.

First is the sector-copier. It relies on sectors be-
ing well-defined, and requires knowing only the val-
ues for the prologues and epilogues. The sectors are
copied one at a time in sequential order, for each of
the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing val-
ues instead. Some sector-copiers rely on DOS to
perform the writing. In order for that to work, the
disk must be formatted first, because that kind of

sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place
a sector on a track. In any case, the sector-copier
cannot deal easily with deviations from the standard
format, and requires a lot of interaction to copy sec-
tors for which the prologue and/or epilogue values
are not constant. Some sector-copiers can be di-
rected to ignore the sectors that they cannot read,
but obviously this can lead to important data being
missed.

Second is the track-copier. It also relies on sec-
tors being well-defined, with known the values for
the prologues and epilogues. However, it reads the
sectors in the order in which they arrive, and then
writes the entire track in one pass®!, by itself. It
shares the same limitations as the sector-copier re-
garding reading sectors and discarding the data be-
tween them, but it keeps the sectors in the same
order as they were originally, which can be impor-
tant. (§7.10.9.)

Third is the bit-copier. Unlike the previous two,
it makes as few assumptions as possible about the
data on the disk. Instead, it treats tracks as the
bitstream that they are, and attempts to measure
the length of the track while reading.*? It intends
to write the track exactly as it appears on the disk,
including the data between the sectors, in one pass.
Some bit-copiers can be directed to copy the addi-
tional zero-bits in the stream, but there is a limit
to how reliably these bits can be detected, and the
method to detect them can be exploited. Some bit-
copiers can be directed to attempt to reproduce the
layout of the disk across track boundaries. See sec-
tions 7.10.12 and 7.11.3.

The most important point about copiers in gen-
eral is that there is simply no way to read data off of
a disk with 100% accuracy, unless you can capture
the complete bitstream on the disk itself, which can
be done only with specialised hardware. There is no
way for software alone to read all of the bits explic-
itly and understand how the controller will behave
while parsing theme

41 As opposed to reading the sectors in sequential order, and then writing the entire track—that would only make it a sector-

copier with a faster write routine.

42 A sector-copier can use the collection of sectors as a basic track length; the bit-copier has no such luxury. Instead, it is left
to “guess”, and might be forced to discard or insert additional data to reconstruct a track of the same length. The difference
occurs when the rotation speed of the drive that is being used to make the copy is not the same as that of the drive that was

used to make the original.

7.8 Super-super decoder ring

Despite the quite strict requirements regarding the
format of data on the disk, DOS introduced two ad-
ditional requirements regarding the format of data
within a sector. The first requirement is that there
must not be more than one pair of zero-bits in the
value. The second requirement is that there be at
least one pair of consecutive one-bits, excluding the
sign bit.

If we ignore the DOS requirements for the mo-
ment, and consider instead all possible values which
comply with the hardware requirement to have no
more than two consecutive zero-bits, then there are

81 legal values.

10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)
10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)
10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)
10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)
10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)
10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (FT7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)
10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)
10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)
10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)
10101010 (AA) 11001011 (CB) 11100111 (ET7)

10101011 (AB) 11001100 (CC) 11101001 (E9)

10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements
that there not be more than one pair of zero-bits,
then there are only 72 compliant values, as we see
here:

10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)
10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)
10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)
10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)
10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)
10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)
10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)
10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

If we introduce the second of the DOS require-
ments that there be at least one pair of consecutive
one-bits, excluding the sign bit, then there are only
64 compliant values:

43

10010110
10010111
10011010
10011011
10011101
10011110
10011111
10100110
10100111
10101011
10101100
10101101
10101110
10101111
10110010
10110011

(96)
7N
(94)
(9B)
(9D)
(9E)
(9F)
(A6)
(A7)
(AB)
(AC)
(AD)
(AE)
(AF)
(B2)
(B3)

10110100
10110101
10110110
10110111
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11001011
11001101
11001110
11001111
11010011

(B4)
(B5)
(B6)
(B7)
(B9)
(BA)
(BB)
(BC)
(BD)
(BE)
(BF)
(CB)
(CD)
(CE)
(CF)
(D3)

11010110
11010111
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100101
11100110
11100111
11101001
11101010
11101011
11101100

(D6)
(07
(D9)
(DA)
(DB)
(DC)
(DD)
(DE)
(DF)
(E5)
(E6)
(E7)
(E9)
(EA)
(EB)
(EC)

11101101
11101110
11101111
11110010
11110011
11110100
11110101
11110110
11110111
11111001
11111010
11111011
11111100
11111101
11111110
11111111

(ED)
(EE)
(EF)
(F2)
(F3)
(F4)
(F5)
(F6)
(F7)
(F9)
(FA)
(FB)
(FC)
(FD)
(FE)
(FF)

That leaves us with eight values for which there
is not more than one pair of zero-bits, but also not
one pair of consecutive one-bits, excluding the sign
bit. DOS reserves some of these value for a separate
purpose.

10010101
11010010
11010100
11010101
10100101
10101001
10101010
11001010

(95)
(D2)
(D4)
(D5)
(A5)
(A9)
(AA)
(cA)

That leaves us with 17 values for which there
are not more than two consecutive zero-bits, which
seems like a missed opportunity for a better encod-

ing:
10010010 (92) 10101001 (A9) 11100100 (E4)
10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)
10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)
10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)
10100101 (A5) 11010101 (D5)

Having exactly 64 entries in the table allows us
to represent all of the values using six bits. That
leads us to an encoding method known as “6-and-2
Group Code Recording (GCR)” or more commonly
“6-and-2” encoding.

In “6-and-2” encoding, an eight-bit value is split
into two parts, where the high six bits are separated
from the low two bits. (The disk system for which
DOS 3.2 was first written had an additional restric-
tion that did not allow consecutive zero-bits, and
so used “5-and-3” encoding for the same purpose.)
To encode an entire sector, each of the two-bit val-
ues are gathered together, such that three of them
form another six-bit value in reverse order, and are
stored first, followed by each of the regular six-bit
values. Prior to storing any of the values, they must
be transformed into the values in our table of 64
nibbles. This is done by using the original value as
an index into the nibble table, and writing the value
from the table instead.

When we place the original value beside the nib-
ble value, the table looks like this:

00 = 96 10 = B4 20 = D6 30 = ED
01 = 97 11 = B5 21 = D7 31 = EE
02 = 9A 12 = B6 22 = D9 32 = EF
03 = 9B 13 = B7 23 = DA 33 = F2
04 = 9D 14 = B9 24 = DB 34 = F3
05 = 9E 15 = BA 25 = DC 35 = F4
06 = 9F 16 = BB 26 = DD 36 = F5
07 = A6 17 = BC 27 = DE 37 = F6
08 = A7 18 = BD 28 = DF 38 = F7
09 = AB 19 = BE 29 = Eb 39 = F9
0A = AC 1A = BF 2A = E6 3A = FA
0B = AD 1B = CB 2B = E7 3B = FB
0C = AE 1C = CD 2C = E9 3C = FC
OD = AF 1D = CE 2D = EA 3D = FD
OE = B2 1E = CF 2E = EB 3E = FE
OF = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table—
#$AA and #$D5—for the prologue signatures. These
values are good candidates for the purpose of iden-
tifying the headers, because they do not conform to
the “at least one pair of consecutive one-bits” cri-
terion, and thus do not conflict with the entries in
the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 with-
out the sign bit. By reserving these values, it en-
sures that the bitstream generated by arbitrary sec-
tor data cannot contain a long string of ones (pre-
vented by reserving #$FF), or alternating zeroes and
ones (prevented by reserving #$AA and #$D5), re-
gardless of the user’s data.

The third value of the prologue signature (#$96
or #$AD) need be unique only between the headers,
in order to distinguish between the two. The combi-
nation of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table—
#$AA—for the second byte of the epilogue signatures,
for the same reason as for the prologue. The first
byte of the epilogue signature need not be unique
with respect to sector data (because the combina-
tion of unique values and non-unique values still pro-
duces a unique sequence), but obviously it must not
match the first byte of the prologue, because the
third byte of the epilogue (intended to be #$EB) is
written sometimes with only limited success (and it
is never verified for this reason), and so could poten-
tially be read as the third byte of a prologue instead,
with unpredictable results.

The decoding process requires a reverse transfor-
mation, via a table which is typically filled with all
of the values in a six-bit number. (See the sections
on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk
are used as an index into the table, in order to re-
cover the original six-bit value. So the table has
gaps between some of the values, because the legal
values of the nibbles are not consecutive.

Note that convention is a powerful force. There
is no reason for the table to have the nibbilisation
entries in that order, or to exclude #$AA or #$D5 (or
any of the other 15 entries from the last table) from
the set. Further, according to John Brooks, it is pos-
sible to use all 81 values from our first table, com-
bined with a special encoding method, which would
increase the data density by 105.5%, and potentially
even more.*3

7.9 Write-protection

The absolute simplest possible protection against a
copy is to check if the disk is write-protected. The
vast majority of owners of duplicated software won’t
bother to write-protect the disk. If the disk is not
write-protected, then the image is considered to be
a copy, rather than the original.

Alien Addition uses this technique.

;assumes slot 6

7975 LDA $COED ;request status

7978 LDA $COEE ;read status

797B BPL $7985 ;taken if write—
enabled

A more generic version of the technique is
slightly longer:

0000 LDX $2B ;fetch slot (x16)

0002 LDA $C08D, X ;request status

0005 LDA $CO8E, X ;read status

0008 BPL $0008 ;hang if write—
enabled

7.10 Sector-level protections
7.10.1 Altered prologue/epilogue

This is one of the simpler techniques available, and
was used by many titles. Standard DOS 3.3 uses

43http://wuw.bigmessowires.com/2015/08/27/apple-ii-copy-protection/#comment-227325

44

the sequence #$D5 #$AA #$96 to identify the ad-
dress field prologue, #$D5 #$AA #3$AD to identify the
data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose
from the 17 values from our fifth table, for either the
first two bytes of the prologue values, or the second
byte of the epilogue. It is also possible to choose
from among the 81 values from our first table, for
either the third byte of the prologue, or the first byte
of the epilogue.

Most commonly, only one value is changed in the
prologue or epilogue, and that same value is used for
every sector on every track of the disk.

Lucifer’s Realm uses this technique; the epilogue
was changed from #$DE #$AA to #$DF #$AA.

The Tracer Sanction extended the technique by
carrying a table of values, and using a different value
for each track.

Masquerade extended the technique to the sec-
tor level, by requiring that each even sector has one
value, and each odd sector has another value. The
routine extracts bit zero of the sector number, and
then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5
(the standard value), and odd sectors use #$D4. This
is necessary because sector zero of track zero must
have the regular value in order to be readable by the
boot PROM.

The Coveted Mirror used exactly the same
technique—and almost the exact same code-at only
the track level.

Due to size limitations, the boot PROM does
not verify the epilogue bytes** allowing all sectors
on all tracks—including the boot sector itself—to be
protected. The most common technique involved al-
tering the epilogue values to something other than
the default value. This protection cannot be repro-
duced by a sector-copier or track-copier, which re-
quires the default values to be seen, because they
will fail to copy the sector. Operation Apocalypse
uses this technique.

Given that the boot PROM does not verify the
epilogue bytes, a very light protection technique is
to change the epilogue values to something other
than the default values for sector zero of track zero
only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which requires the default values to be
seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use

of this technique.

A common technique to defeat this protection is
to ignore read errors for all sectors, in the hope that
it is caused by the non-default epilogue values alone.
However, given the degrading state of floppy disks
these days, ignoring read errors can hide the fact
that the disk is truly failing.

The address field contains more than just the
track and sector numbers. It also contains a vol-
ume number. This value can be used as a quick
method to determine which disk from a set is cur-
rently inserted into the drive. However, support for
it—even in DOS—is poor. So many programs, in-
cluding DOS itself, assume that the volume number
is the default value. When it is changed, the read
fails. By hard-coding the new value in DOS, the
disk will be readable only by itself. Algebra Arcade
uses this technique.

This technique can also be used in a slightly dif-
ferent way. Since each sector can have its own vol-
ume number, any value can be put there, as long as
the program is aware of that fact.

Randamn sets the volume number to a check-
sum calculated from the current track and sector,
and hangs if the values do not match.

Both the address field and data field contain
a checksum of the data that precede it, prior to
the epilogue. The checksum algorithm is usually
a rolling exclusive-OR. of each of the bytes, with a
zero seed. However, there is no requirement that
either of these things is used, for sectors other than
sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a
cumulative ADD or anything else at all. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which relies on the regular algorithm,
because the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this
technique. It maintains a counter at address $40,
which coincides with the track number which is
stored by the boot PROM. In order to break out
of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with
an intentionally bad checksum. This causes the boot
PROM to rewrite the value at address $40. The
new value is exactly what the program requires as
the exit condition. This protection cannot be re-
produced by a sector-copier or track-copier, because
they will fail to copy this sector, resulting in a disk
that has only sectors with good checksums. The disk

441t also ignores the address field checksum and volume number.

45

will not boot because it will never exit the loop.

The volume number is normally an eight-bit
value. For efficiency of encoding it, DOS uses a “4-
and-4” encoding, where the four odd bits are sepa-
rated from the low even bits, and converted to nib-
bles. To recombine them, it is a simple matter to
shift the nibble holding the odd bits (“abcd”) one
to the left, resulting in an encoding that looks like
“alblcldl”, and then to AND the result with the nib-
ble holding the even bits (“efgh”), whose encoding
that looks like “lelflglh”. This method requires 16
bytes to describe the address field. Since the track,
sector, and checksum, are known to fit into six bits
each, it is easy to see that if the volume number is
disregarded, a “6-and-0" encoding can be used in-
stead. This method requires only four nibbles to
describe the address field. Algernon uses this tech-
nique.

The entries in the address field have a defined
order because the boot PROM needs to read them
to identify sector zero of track zero, and any other
sector which the PROM is asked to read. However,
it is possible to change the order of the entries for
other sectors on the disk, and then to read the sec-
tors manually.

7.10.2 Fewer sectors

The major reason for using 16 sectors per track is
because that is the maximum number that can fit
within the standard format created by DOS 3.3.
DOS 3.2 supported only 13 sectors per track, be-
cause of the limitation of the hardware regarding
consecutive zeroes. Copy protection techniques are
free to use fewer sectors than either of those values.

Wavy Navy uses ten sectors per track, while
Olympic Decathlon uses eleven and Karateka uses
a dozen. The sectors in these examples are all the
regular size, but encoded in a wasteful manner. (Pri-
marily the “4-and-4” encoding was used because the
decoder is very small, but sometimes “5-and-3” be-
cause the decoder looks weird when compared with
the more familiar “6-and-2” encoding.) The wasteful
encoding is the reason for the reduced sector count;
there really isn’t more room for more sectors.

46

Karateka

7.10.3 More sectors

The standard DOS 3.3 format disk uses 16 individ-
ual sectors per track, with relatively large gaps be-
tween the sectors. Consider how much space would
be available if those sectors were combined into a
single large sector, with a single field that combines
both address (specifically, only the track number)
and data fields. Yes, it would require reading the
entire track in order to find the field again once the
track had been verified, but for some applications,
performance is not that critical. This is what Info-
com did, on programs such as A Mind Forever Voy-
aging. Once the track had been found, and the data
field found again, then the program read (and dis-
c