
PoC ‖ GTFO

IN THE THEATER OF LITERATE DISASSEMBLY,

PASTOR MANUL LAPHROAIG
AND HIS MERRY BAND OF

REVERSE ENGINEERS
LIFT THE WELDED HOOD FROM

THE ENGINE THAT RUNS THE WORLD!
10:3 Exploiting Pokémon in a Super GameBoy

10:4 Pokéglot!

10:5 Cortex M0 Marionettes with SWD

10:6 Reversing a Pregnancy Test

10:7 Apple][Copy Protections

10:8 Jailbreaking the Tytera MD380

Washington, District of Columbia

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. He who has eyes to read, let him read!
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo10.pdf. January 16, 2016.

1

Legal Note: The buying party agrees that Pastor Manul Laphroaig and his merry band of Reverse Engi-
neers lift the hood from the Engine That Runs the World must be copied and shared with all neighbors, as
defined by previously agreed-upon language, until the year 2104. The buying party also agrees that, at any
time during the stipulated 88 year period, the seller may legally plan and attempt to execute one (1) heist
or caper to steal back this issue of PoC‖GTFO, which, if successful, would return all ownership rights to
the seller. Said heist or caper can only be undertaken by currently active clergy of the Church of the Weird
Machines and/or neighbor Dan Kaminsky, with no legal repercussions.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo10.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/
http://www.sultanik.com/pocorgtfo/
http://openwall.info/wiki/people/solar/pocorgtfo

Technical Note: The polyglot file pocorgtfo10.pdf is valid as a PDF, as a ZIP file, and as an LSMV
recording of a Tool Assisted Speedrun (TAS) that exploits Pokémon Red in a Super GameBoy on a Super
NES. The result of the exploit is a chat room that plays the text of PoC‖GTFO 10:3.

Run it in LSNES with the Gambatte plugin, the Japanese version of the Super Game Boy ROM and the
USA/Europe version of Pokémon Red.

. / l s n e s −− l i b r a r y=gambatte/ core . so

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo10.pdf -o pocorgtfo10-book.pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
LATEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Minister of Spargelzeit Weights and Measures FX

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this
eleventh release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little col-
lection of articles for ladies and gentlemen of distin-
guished ability and taste in the field of software ex-
ploitation and the worship of weird machines. This
is our eleventh release, given on paper to the fine
neighbors of Washington, D.C.

If you are missing the first ten issues, we the edi-
tors suggest pirating them from the usual locations,
or on paper from a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth or eighth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the sev-
enth from his parents’ inkjet printer, the ninth in
Montréal, or the tenth in Novi Sad or Stockholm.

Our sermon today, to be found on page 4, is a
sordid tale in the style of a Dickensian ghost story.
Pastor Laphroaig invites us to the anatomical the-
ater, where helpless tamagotchis are disassembled in
front of an audience, for FUN!

Page 7 contains a delightfully sophisticated and
reliable exploit for Pokémon Red on the Super
GameBoy, starting from a save-game glitch, then
working forward through native Z80 code execution
to native 65C816 code on the host Super NES. They
do all of this on real hardware with scripted access
to only the gamepad and the reset switch!

Keeping up our tradition of shipping in funky
file formats, this PDF is a new polyglot! Page 24
contains the details for how this PDF is also an ex-
ploit, loading Pokémon Plays Twitch in the Lsnes
emulator.

Micah Elizabeth Scott is becoming a regular con-
tributor to this journal, and we eagerly await each
of her submissions. Page 26 contains her notes on
ARM’s replacement for JTAG, called Single Wire
Debug or SWD. Driving SWD from an Arduino,
she’s able to move the target machine like a mari-
onette, scripted from literate HTML5 programming
with powerful new elements such as swd-hexedit.

When we heard that Amanda Wozniak was con-
tracted to reverse engineer a pregnancy test, but
never paid for the work, we quickly scrounged up five
Canadian loonies to buy the work as scrap. Page 32
contains her notes, and we’ll happily pay five more
loonies to the first use of this technology in a Hack-
aday marriage proposal or shotgun wedding.

On page 39, Peter Ferrie shares tricks for break-
ing the copy protection of dozens of Apple][games.
When we told Peter to keep his notes to six pages,
he laughed and dared us to find tricks worth cut-
ting from his article. Accordingly, our cutting-room
floor is empty and this article is the most complete
collection of Apple][cracking techniques in modern
publication.

Travis Goodspeed has been playing with Dig-
ital Mobile Radio (DMR) lately, a competitor to
TETRA and P25 that is used for amateur ra-
dio, as well as trunked radio for businesses and
cash-strapped police departments. Page 76 con-
tains his notes for jailbreaking the Tytera MD380’s
bootloader, dumping all of protected memory, then
patching its application to enable promiscuous
mode. These tricks should also work on the CS700,
CS750, and a variety of other DMR handhelds.

On page 88, the last and most important page,
we pass around the collection plate. We don’t need
your dimes, but we’d love some nifty proofs of con-
cept.

3

2 Three Ghosts and a Little, Brown Dog
a sermon by Pastor Manul Laphroaig

Rise, neighbors, and in the tradition of the sea-
son, let’s have a conversation with spirits of the past,
the present, and the future. We will head to a dis-
reputable place, a place of controversy where, ac-
cording to the best moral authorities, irresponsible
people do foul things for fun—a place of scandalous,
wholesale wickedness which must be stopped!

Yes, neighbors, we are heading to an anatom-
ical theater, to observe its grim denizens at their
grisly pastime. While some dissect carcasses, the
rest watch from rows of seats. They call it learn-
ing and finding things out—even though most of
what meets the eye looks like merely breaking things
apart. They say they are making things better—
even curing diseases!—though there are highly titled
authorities with certified diplomas and ethically ap-
proved methodologies who make it their business to
improve things “holistically,” without all this discon-

certing breakage and cutting things off. Truly, if this
doesn’t beg the question of “How is this allowed?”
then what does?

There was a time, neighbors, when anatomy
didn’t mean trying to guess how a thing functioned
by dissecting a specimen. When Andreas Vesal-
ius published his classic human anatomy atlas with
its absolute priority of dissection for learning what
was and what was not true about the human body,
his fixation on biological disassembly was a scandal.
A proper anatomy book was understood to include
Aristotle’s four humors and a fair bit of astrology;
imagine how regressive Vesalius’ fixation on cutting
things apart to find their function must have looked!
Even when he became a royal court physician, other
learned physicians called him a barber—for everyone
knew that only barbers and sawbones used blades.
Until Victorian times, a doctor was a gentleman,

4

and a surgeon wasn’t. Testing the patient’s urine
was fine, but taking knives to one was simply below
a proper doctor’s station.

Vesalius’ dissection-bound atlas became an in-
stant hit, though. It turned out that going into spe-
cific techniques of dissection—place a rope here and
a pulley there—so that others would replicate it was
exactly what was needed; the venerable signs and el-
ements, on the other hand, not so much. Which did
not save Vesalius from having to undertake an emer-
gency trip to far-away lands for an obscure reason,
dying in abject poverty on the way. He died before
the first dedicated anatomical theater was built in
1594, by which time anatomy finally meant what he
had made it mean.

Ah, but that was then and now is now! The
year is 1902, and physiology is the latest scandal.
Again, moral delinquents and their supporters are
doing something loathsome: vivisection. Again,
they come up with excuses: it’s all about finding
out how things work, they say; some kind of knowl-
edge that makes them different from the uninitiated,
we hear. And even if there was knowledge to be
gained, could it really be trusted to such an imma-
ture and irresponsible crowd? Stuck to their—not
so innocent—toys and narrowly focused views, they
can’t even see the bigger ethical picture! They cater
to and are occasionally catered by truly objection-
able characters—and then have the gall to shrug it
off. They talk about education, but who in their
right mind would let them near children? Too bad
there isn’t a general law against them yet, and the
establishment is dragging its feet (or even has its
own uses for them, no doubt disgusting)—but the
stride of social progress is catching up with them,
and, with luck, there soon will be!

That was the year of high court drama, a pitched
battle between people who each believed to em-
body “social progress” against “superstition” on both
sides. It saw rallies by socialists and riots by medi-
cal students, scientists and suffragettes, British lords
and Swedish feminists—and a lot more, including
its own commemorative handkerchief merchandise.
It is immortalized in history as The Brown Dog af-
fair, one so dramatic that even the Wikipedia arti-
cle about it makes for good reading. Incidentally,
the experiment involved led to the discovery of hor-
mones.

So says the Ghost of Science Past, but we bid
him to haunt us no longer. There is another, more
cheerful Spirit to occupy our attention—the Spirit of
the Present. This is a more cheerful Spirit, involv-
ing pets only as cute pictures thereof—and lots of
them!—much to the relief of those who think neither
Schrödinger nor Pavlov would make good friends.

But this Spirit isn’t left without attention from
our moral betters. What about the children? What
about the lowlives and the criminals whom we em-
power by our so-called knowledge? What about
the bullies, the haters, the thieves, the spies, the
despots, and even—the terrorists? Would a good
thing be called exploitation or pwnage? This new
reality is so scary to some people that their response
goes straight to nuclear; they call for a Manhattan
project, but what they really mean is “nuke it from
orbit.” To some, it’s even about evil “techno-priests”
hijacking “true social progress”—or at least it sells
their books.

Nor is this Spirit’s domain devoid of court
drama, even in our enlightened times—although
looking where we tend to fall on the scale between
Vesalius and Lord Alverstone’s Old Bailey, one be-
gins to wonder just where the light is going. No
wonder the Spirit of the Hacking Present looks some-
what frayed around the edges.

Why wait for the Specter of the Future to make
an appearance? I say, neighbors, let’s make like 1594
at the University of Padua—back when a university
used to have quite a different place in this game of
ghosts—and have our own Anatomical Theater, a
Theater of Literate Disassembly!

Just as Knuth described Adventure with Liter-
ate Programming,1 we’ll weave together the disas-
sembled code of a live subject with expert explana-
tions of its deeper meaning. (Of course the best part
might well be a one liner, but we’ll save the reader
hours of effort!) We’ll weave a log and a transcript
into an executable script that reproduces the cuts of
a Master Surgeon, stroke by stroke.

It is high time. We have been doing our dissec-
tions alone—with none or few to watch and learn—
long enough. Let other neighbors watch your disas-
sembly, show them your technique, and let them get
a good view and share the fun.

As the good old U. of Padua preserved its the-
ater, so shall we! And then perhaps the Specter of
the Future will smile upon us.

1unzip pocorgtfo10.pdf adventure.pdf

5

Stage 4: At 3,840 bytes per
second (4 controllers of 2
bytes at 60 frames per
seconds), write a block
transfer loader into memory
and execute it.

Stage 5: Use block loader to
transfer intended SNES
payload of variable length
and execute it.

Stage 6: Reset SNES to
clear state, execute
Twitch chat interface,
read text in 5-bit or 7-bit
encodings, respond to
control packets to
display web view, make
Twitch chat say Hi, win
the Internet.

Stage 2: Press buttons to
write two command
packets in memory one
nibble per frame, overwrite
jump to execute.

Stage 3: Escape SGB, hang
Pokemon to stop music,
read a set number of
button presses 1 byte per
frame to write a faster
transfer method and
execute it.

Stage 1: Swap Pokemon
and items to get rival's
name in items list, toss
items to form a button
reading payload, and
leave menu to execute it.

Stage 0: Inject
useful data by
naming the
rival RxRxP

K and
resetting while
saving to get
255 Pokemon.

6

3 Pokémon Plays Twitch
by Allan Cecil (dwangoAC), Ilari Liusvaara (Ilari) and Jordan Potter (p4plus2)

For the Awesome Games Done Quick (AGDQ)
2015 charity marathon we exploited a chain of un-
modified Nintendo game console components con-
sisting of a Pokémon Red Game Boy cartridge in a
Super Game Boy running in a Super Nintendo. We
plugged the latter into custom hardware posing as
a normal controller. In this seven-stage exploit, we
corrupted a save file to give ourselves 255 Pokémon,
swapped Pokémon, and tossed items to plant shell-
code. We committed a series of atrocities using
documented command packets and ultimately broke
into the Super Nintendo’s working RAM, where we
wrote our own chat interface to display live contents
of the Twitch chat and even a representation of a de-
faced website.

3.1 TAS’ing a Game to execute Ar-
bitrary Code

TASVideos2 hosts Tool-Assisted Speedruns of
games that are created using an emulator with speed

controls such as slow motion and frame advance,
along with the ability to save and restore the state
of the game (or, rather, of the entire console) at any
time. TAS movie files consist of a list all of the but-
ton presses sent to the console every frame from the
time it is powered on until the game is beaten. It
aids our poor human reflexes, but it can do a lot
more—like arbitrary code execution!

The first run on the site to use this ability to
execute arbitrary code to jump to the credits of
a game was Masterjun’s Super Mario World run.
Later, Bortreb used arbitrary code execution in a
run of Pokémon Yellow, marking the first time ex-
ternal content was added to an existing game.

In late 2013, dwangoAC worked with Ilari and
Masterjun to present a run at AGDQ 2014 that
programmed the games Snake and Pong into Super
Mario World on a real console using a replay device
(also known as a “bot”) from True.3 This was a huge
success and was covered by Ars Technica, but we
knew that we could do even more, which ultimately
led us to the project described in this article.4

3.2 The Game Choice

We started with an end-goal of executing arbi-
trary code on a Super Nintendo (SNES) using a
Super Game Boy (SGB) cartridge as the entry
point. We initially planned to use Pokémon Yel-
low based on Bortreb’s exploit in that game, but
quickly discovered that the SGB detection routine
used by Pokémon Yellow is extremely broken and
only worked on a real SGB by pure chance.5 Af-
ter looking at other options, we chose to use the
Pokémon Red version, which uses a more reliable
SGB detection routine that gets us access to the
full SGB palette, a custom border, and consistent
timing benefits we’ll discuss later.6 Using Pokémon

2http://tasvideos.org
3http://truecontrol.org
4It should also be noted that all recent AGDQ events have directly benefited the Prevent Cancer Foundation which was a

huge motivator for several of us who worked on this project. The block we presented this exploit in at AGDQ 2015 helped raise
over $50K and the marathon as a whole raised more than $1.5M toward cancer research, making this project a huge success on
multiple levels.

5In brief, the detection routine is extremely sensitive to how many DMG clock cycles various operations take; the emulator
is likely slightly inaccurate, which causes the detection to fail, but from looking at the behavior it seems like it “just works” on
the real hardware. This is sheer luck, and the game developers likely never even knew it was so fragile.

6If the SGB BIOS does not find the special codes in the DMG game header that indicate it’s an SGB-enabled game ($146
equal to $03), it locks up the command channel until the game is reset, rendering any SGB based exploitation impossible. See
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header for more details.

7

Red also has another added benefit in that the entire
game has been skillfully disassembled.7

3.3 The Emulator

When we started this project in August 2014, the
only emulator capable of emulating an SGB inside of
an SNES at a low enough level for our needs was the
BSNES emulator. Unfortunately, although BSNES
is very accurate at emulating an SNES, it doesn’t do
a very good job of emulating an SGB. The Gambatte
Dot-Matrix Game Boy (DMG) emulator is likewise
very accurate, but is unable to emulate an SGB on
its own. Ilari was able to create a hybrid emulation
core using BSNES to emulate the SNES↔DMG in-
terface chip while using Gambatte for DMG emula-
tion. This was a considerable undertaking, but in
the end the emulator was very usable, albeit some-
what slow, as properly emulating the synchroniza-
tion between the SNES CPU and the DMG CPU
is a challenge. Ilari continued to provide emulator
development and scripting support throughout the
project.

3.4 The Hardware

We didn’t just want to exploit a game in the sandbox
of a console emulator and call it a Proof of Concept.
We wanted to do the job properly and create an ac-
tual exploit that would work on real hardware. Only
one member of our team (dwangoAC) had all of
the required hardware in one place, namely a SNES
console, a SGB cartridge, a copy of Pokémon Red,
and the replay device posing as a controller, also
known as a “bot.”8 Because we wanted to stream
data from an attached computer, we opted to use
an older, serial-over-USB connected device, namely
True’s NES/SNES Replay Device. This choice of
hardware had a few limitations but worked out well
for the project in the end.

Figure 1 – The legendary TASBot

3.5 The Plan

We were initially unsure what kind of payload to
create once we had gained the ability to execute
arbitrary code on the SNES. Initially we investi-
gated methods of showing crude video, but aban-
doned it after spending far too much time failing to
increase the datarate and running into limits with
the processing speed of the SNES’s 65C816 CPU.
An IRC discussion about Twitch Plays Pokémon9

led dwangoAC and p4plus2 to brainstorm what it
would take to incorporate similar elements into our
payload, and the concept of Pokémon Plays Twitch
was hatched—where a Pokémon character enters a
Twitch chat room and “plays” Twitch. In the end,
we took it to the next level by giving Red a voice in
a chat interface on the SNES and giving TASBot,
the robot holding the replay board, the ability to
speak through espeak and argue with Red. There’s
much more to say about that, but let’s first get to
the point where we can execute arbitrary code!

7unzip -j pocorgtfo10.pdf pokemon_plays_twitch/pokered-master.zip
8The term “bot” was originally used because it’s as if you have a robot playing the game for you; dwangoAC later attached

one of these replay devices to a R.O.B. robot as shown in Figure 1 and after presenting Pong and Snake on SMW, the name
TASBot came to be associated with the combination as described at http://tasvideos.org/TASBot.

9A way of crowdsourcing gameplay by parsing commands sent over IRC.

8

Figure 2 – A strange rival

3.6 Stage 0: Corrupting a save game.

(3–7 bytes per minute.)

We start the game by creating a save file, giving
ourselves the default name of Red and naming our
rival RxRx

PK

as shown in Figure 2. We then save the
game as in Figure 3, but reset the console directly af-
ter it starts writing to the cartridge’s SRAM. There
is checksumming on most of the values in the save
file but at least one value has no checksum at all,
namely the byte at the start of the “party data”
that stores the number of Pokémon that have been
caught. By some chance, this value in SRAM (at
0xAF2C, or 0x2F2C when paged) is initially set to
FF, so we wait long enough for valid name data and
a save file header to be written before resetting. It is
possible to do this with human reflexes as the win-
dow is approximately 20 ms but we opted to run
a wire from our replay device to pin 19 on the ex-
pansion port on the underside of the SNES. This
allowed us to trigger a reset by shorting the pin to
ground, as shown in Figure 3.10

3.7 Stage 1: Writing Z80 assembly
by swapping Pokémon and toss-
ing items.

(30 bytes per second.)
After loading the game but before changing any-

thing, the initial state of the GBBUS memory map
is as follows:11

1 0xD163 Number o f Pokemon caught ,
corrupted to 0xFF in Stage 0 .

3 0xD164 Pokemon IDs (1 byte each) ,
corrupted to 0xFF .

5 0xD16A Sen t i n e l byte (0xFF)
0xD16B Pokemon Data (44 bytes each) ;

7 a l l are corrupted to 0xFF .
0xD273 Pokemon o r i g i n a l t r a i n e r s ;

9 a l l are corrupted to 0xFF .
0xD2B5 Pokemon nicknames ;

11 a l l are corrupted to 0xFF .
0xD2F7 Pokemon owned bitmap (19 bytes) ;

13 a l l z e r o e s .
0xD30A Pokemon seen bitmap (19 bytes) ;

15 a l l z e r o e s .
0xD31D Number o f i tems ; i n i t i a l l y 0

17 0xD31E Items array ; each entry i s 2 bytes ,
an item ID and item count .

19 After the l a s t item , the re i s an FF.
(I n i t i a l l y l o ca t ed at 0xD31E .)

21 0xD347 Money as Binary−Coded Decimal .
(I n i t i a l l y 00 30 00 , $3000 .)

23 0xD34A Rival ’ s name . (Set dur ing Stage 0 ,
i n i t i a l l y

25 91 F1 91 F1 E1 50 00 00 00 00 00 .)
0xD355 <misc data>

27 0xD36E Map l e v e l s c r i p t po in t e r .
(I n i t i a l l y B0 40 .)

We want to adjust some of these values to cre-
ate a payload described in the next section, and the
game conveniently provides three ways to arrange
the state of memory.

• Swapping Pokémon: The game implements
moving Pokémon around the list by swapping
the raw contents of entries in the ID, Data,
Original trainer, and nickname tables, which
happens to offset data by an odd amount.
Since we have 255 Pokémon instead of the 141
the game was originally limited to we can swap

10As with many exploits, the seed for this came from Bortreb’s Pokémon Yellow exploit, which itself came from earlier
discoveries of others. Masterjun adapted the exploit for Pokémon Red using the BizHawk DMG emulator and dwangoAC took
this information and made the Stage 0 and Stage 1 movie file in LSNES.

11The same values can be found in the GBWRAM region at an offset of -0xC000, so the value for 0xD163 in GBBUS (which
isn’t visible in the LSNES memory editor) can instead be found at 0x1163 in GBWRAM. GBBUS addressing is used throughout
for consistency with existing resources such as the pokered disassembly.

12This means the Pokémon data now extends past end of WRAM, and in fact the WRAM should in effect loop around,
although this isn’t used.

9

around the contents of anything in WRAM
above 0xD164.12

• Tossing items: Throwing away unwanted
items decrements the second byte in an item’s
two-byte ID / Quantity pair. Unfortunately,
there are some items that can’t be tossed, ei-
ther because the game prevents tossing them
or because doing so softlocks or crashes the
game.

• Swapping items: Items can be swapped
around in the list of items, which normally
just swaps the item data. If you swap two of
the same item, the game tries to merge them
by adding their counts and then shifting the
item list. The shift adjusts the item count
and writes a new sentinel item ID. (It doesn’t
touch either the item count in that slot or the
old sentinel.)

Since we don’t have any items, let’s get some!
Swapping the first Pokémon with the tenth causes
the FF’s located at 0xD16B through 0xD196 to be
written to 0xD2F7 through 0xD322. Per the mem-
ory map, the number of items is located at 0xD31D
and this is changed along with lots of other nearby
addresses from 00 to FF, which causes the game to
think we have 255 items. We eventually enter the
item menu and proceed to toss a number of safe

items, but—because we can only ever decrement the
quantity byte in each item’s ID/Quantity two-byte
pair—we have to go back and swap Pokémon to make
what was once an ID into an item count and vice
versa.

In order to avoid softlocking the game, we have
to walk through the sequence in a very particular
order. There are several items that the game re-
fuses to toss, some that crash the game if you try to
toss them, some that can only be thrown once—after
which all items afflicted with this condition can no
longer be tossed. Some will crash the game simply
by being in the menu even if you never even select
them.

To work around these pitfalls, we prepare mem-
ory by doing several Pokémon and item swaps fol-
lowed by an initial round of tossing, we go back to
swap Pokémon in a way that realigns memory so we
can now toss what used to be item IDs. We swap
several Pokémon to relocate the Stage 1 code and
create a swath of 0’s in front of it, and at the very
end we swap two identical items to shift memory two
spaces back. That’s a lot to take in in one sentence,
so Figure 4 diagrams the complete list of changes
we make showing the value changes as anchored ini-
tially from GBBUS 0xD349.

The primary purpose of all this swapping and
tossing is to create a better way to craft our own

13The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4, but they turn into 00 63 and 00 91 because we
abuse the fact that the game assumes a quantity of 00 is the same as FF and you can only have ninety-nine of any given item
in one slot. This results in FF+ F4 = 1F3 which is larger than the sum mod 256 dec., at which point the game stores 63 in one

Figure 3 – Corrupting a save game by pressing A to save, then resetting 24 frames later.

10

Address ## ID ## ID ## ID ## ID ## ID ## ID ## ID

0xD34A 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F0 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 E1 50 91 F0 00 00 00 00 00 00 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 50 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 38 00

0xD32F 00 91 F0 00 00 91 F0 00 F4 00 00 E1 38 00

0xD32F 00 91 F0 00 63 91 F0 00 91 00 00 E1 38 00

0xD32F 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

Address ID ## ID ## ID ## ID ## ID ## ID ## ID ##

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Pokemon 1 10 datastart = 0xD349
item 3 5 datastart = 0xD347
Pokemon 3 6 datastart = 0xD331
item 3 4 datastart = 0xD32F

(same ID swap)

Pokemon 4 5 datastart = 0xD324
(even address, so now ID and ## are shifted)

Pokemon -8 -7 datastart = 0xD350
Pokemon 3 4 [0xD35B] = 00
Pokemon 4 5 [0xD366] = 00
Pokemon 5 2 datastart = 0xD366
Pokemon 2 -11 [0xD2CC] = 00
Pokemon -11 -9 [0xD32E] = 00
item 4 5 datastart = 0xD362

toss 1 item

 toss 1 item

toss 24 items

toss 12 items

toss 20 items

toss 45 items

toss 20 items

toss 222 items

toss 8 items

toss 27 items

toss 8 items

toss 27 items

Figure 4 – Pokémon and items are re-arranged in memory to create shellcode.

11

Items1 with1 these1 IDs1 can1 be1 tossed
Game1 refuses1 to1 toss1 items1 with1 these1 IDs
Trying1 to1 toss1 items1 with1 these1 IDs1 crashes1 the1 game
Items1 with1 these1 IDs1 are1 initially1 tossableF1 but1 tossing1 any1 makes1 game1 to1 refuse1 to1 toss1 more
Just1 trying1 to1 show1 these1 IDs1 freezes1 the1 game

xC xDxL x(x) xR xS xH xZ x+ x- xU xA xB xE xF
INC C DEC CLx NOP LD BCFd(Z LD 9BCAFA INC BC INC B DEC B LD BFd- RLCA LD 9a(ZAFSP ADD HLFBC LD AF9BCA DEC BC LD CFd- RRCA
INC E DEC E(x STOP L LD DEFd(Z LD 9DEAFA INC DE INC D DEC D LD DFd- RLA JR r- ADD HLFDE LD AF9DEA DEC DE LD EFd- RRA
INC L DEC L)x1 JR NZFr- LD HLFd(Z LD 9HLEAFA INC HL INC H DEC H LD HFd- DAA JR ZFr- ADD HLFHL LD AF9HLEA DEC HL LD LFd- CPL
INC A DEC ARx JR NCFr- LD SPFd(Z LD 9HLNAFA INC SP INC 9HLA DEC 9HLA LD 9HLAFd- SCF JR CFr- ADD HLFSP LD AF9HLNA DEC SP LD AFd- CCF
LD CFH LD CFLSx LD BFB LD BFC LD BFD LD BFE LD BFH LD BFL LD BF9HLA LD BFA LD CFB LD CFC LD CFD LD CFE LD CF9HLA LD CFA
LD EFH LD EFLHx LD DFB LD DFC LD DFD LD DFE LD DFH LD DFL LD DF9HLA LD DFA LD EFB LD EFC LD EFD LD EFE LD EF9HLA LD EFA
LD LFH LD LFLZx LD HFB LD HFC LD HFD LD HFE LD HFH LD HFL LD HF9HLA LD HFA LD LFB LD LFC LD LFD LD LFE LD LF9HLA LD LFA
LD AFH LD AFL+x LD 9HLAFB LD 9HLAFC LD 9HLAFD LD 9HLAFE LD 9HLAFH LD 9HLAFL HALT LD 9HLAFA LD AFB LD AFC LD AFD LD AFE LD AF9HLA LD AFA
ADC AFH ADC AFL-x ADD AFB ADD AFC ADD AFD ADD AFE ADD AFH ADD AFL ADD AF9HLA ADD AFA ADC AFB ADC AFC ADC AFD ADC AFE ADC AF9HLA ADC AFA
SBC AFH SBC AFLUx SUB B SUB C SUB D SUB E SUB H SUB L SUB 9HLA SUB A SBC AFB SBC AFC SBC AFD SBC AFE SBC AF9HLA SBC AFA
XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND 9HLA AND A XOR B XOR C XOR D XOR E XOR 9HLA XOR A
CP H CP LBx OR B OR C OR D OR E OR H OR L OR 9HLA OR A CP B CP C CP D CP E CP 9HLA CP A

CALL ZFa(Z CALL a(ZCx RET NZ POP BC JP NZFa(Z JP a(Z CALL NZFa(Z PUSH BC ADD AFd- RST LLH RET Z RET JP ZFa(Z PREFIX CB ADC AFd- RST L-H
CALL CFa(ZDx RET NC POP DE JP NCFa(Z CALL NCFa(Z PUSH DE SUB d- RST (LH RET C RETI JP CFa(Z SBC AFd- RST (-H

Ex LDH 9a-AFA POP HL LD 9CAFA PUSH HL AND d- RST)LH ADD SPFr- JP 9HLA LD 9a(ZAFA XOR d- RST)-H
Fx LDH AF9a-A POP AF LD AF9CA DI PUSH AF OR d- RST RLH LD HLFSPEr- LD SPFHL LD AF9a(ZA EI CP d- RST R-H

Figure 5 – Item IDs can double as Z80 opcodes.

code—as it would be quite tedious to use this method
to do anything longer.13 Here’s a disassembly of
what we’ve been able to write so far, starting from
0xD361.

LR35902 shellcode at 0xD361:
30 00 JR NC,0 // nop
76 HALT // wait for frame
F0 F8 LDH A, (0xF8) // load input
4F LD C,A // save in C
76 HALT // wait for frame
F0 F8 LDH A, (0xF8) // load input
91 SUB C // decode opcode
22 LD (HL+),A // stage2[HL++] = A
00 NOP
CD 38 D3 CALL 0xD338 // call stage2

Player's
starting money

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Everything up to this point has been the process
of writing Stage 1, but now it’s time to walk through
executing it, although some of the shortcuts we took
require a bit of explanation.

First, the reason 0xD361 contains 30 is because
the beginning of the Stage 1 data is mostly copied
from the field that holds the rival name—which hap-
pens to be directly preceded by the player’s money.
Of this quantity we see the last two out of three
bytes represented here in BCD format; the full value
00 30 00 starts at 0xD360. It would take extra ef-
fort to eliminate the 30 00 portion, but because that
sequence is effectively a NOP, we leave it be.

To reduce the number of bytes that needed to
be modified, we used several clever tricks. The code
that jumps to this point sets HL to the jump target
address, and HL is a canonical pointer register that
can be written to. We reused 0xD36E (the map level
script pointer) as the loop jump address; upon exit-

ing the menu, the map level script pointer is loaded
and called, so it loads the value in 0xD36E into HL
and jumps to it.

1041 LD HL, 0xD36E
2 1044 LD A, (HL+)

1045 LD H, (HL)
4 1046 LD L ,A

1047 LD DE, 0x104C
6 104A PUSH DE

104B JP (HL) ; [D36E]

Stage 1’s purpose is to read the buttons being
held down on the controller and write them some-
where, eventually executing what we’ve written us-
ing this slightly more efficient method than twid-
dling with Pokémon and items. At a high level,
this code will read a byte from the controller on one
frame, read another byte from the controller on the
next frame, subtract the two, store the result at a
given memory offset and repeat, successively storing
values one byte at a time in order in memory, and
ultimately executing said bytes.

The game’s NMI (Non-Maskable Interrupt) rou-
tine writes a bitmap of the current buttons be-
ing held down during each frame (mapped as the
buttons ABsSRLUD from lowest to highest bit)
to 0xFFF8, and HALT is used to wait for the next
frame. Unfortunately, the SGB BIOS cancels out
LEFT+RIGHT or UP+DOWN if they are pressed
simultaneously and instead converts those bits to
0’s. To work around it, our short routine reads
two frames and combines the values in a way that
can yield arbitrary bytes. Because of restrictions on

item and 190modFF = 91 is stored as the remainder in the other.
14There is no working way to ADD the two reads because we can’t write that opcode. Due to byte restrictions, we can’t use

JP either, but CALL is close enough. See Figure 5.

12

which bytes we can create, we use LD C,A to store
the first value and then SUB C to combine them.14

Using this method, we write the following data
to 0xD338, which is executed every frame; that is to
say, it is repeatedly executed even before it is fully
written!

1 18 27 <= f i r s t jump
3E 1C CD AF 00 21 4D D3 CD EB 5F 2E 58 00 CD

EB 5F 18 FE 79 00 18 00 06 AD 12 42 30
FB 40 91 18 42 00 00 18 00 00 00 <=
Stage 2 payload

3 18 D7 <= second jump

The memory range from 0xD338 to D360 con-
tains only 00’s and forms a cascade of harmless NOP
instructions. This is critical, because this entire sec-
tion is executed every time a byte is written; this
also means we have to be extremely careful with
what we write, to avoid executing an incomplete
Stage 2 that causes a crash. The solution is to write
a jump instruction of 18 27 into the first two bytes—
which will skip execution of Stage 2 while it is being
constructed. The sequence 18 27 can’t be entered
in one frame, but fortunately the incomplete form,
18 00, is effectively a NOP instruction. This gives
us the full range from 0xD33A to 0xD360 where we
can write whatever we want with impunity, and HL
points to 0xD33A.

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361
D338

write position
(by S1, from the data

sent via the controller)

exploit call

writes one byte
at each execution

exploited
address

written by inventory abuseplayer's
money

acts as a NOP

We write 0x18 (JR x) into current write position
and advance write position:

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 00

We write 0x27 into current write position, turn-
ing the first instruction into a nontrivial jump.

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39

We write the Second Stage to D33A–D360 which
is jumped over and not executed. This takes 39 it-
erations through the loop.

D33A

S2 payload (skipped) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
30 00

After this, we somehow need to jump to the
newly completed Stage 2. The HL now points to
0xD360 and the next byte we poke is 18, which turns
the first instruction in the Stage 1 code into JR 0,
which is still effectively a NOP.

We write 18 (JR x) to current position, turning
the 30 into 18, acting as a JR 0 instruction.

D33A

S2 payload (skipped) JR 0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
18

We write D7 into 0xD362, which modifies the in-
struction to be JR -41, which jumps to 0xD33A, the
start of the second payload. After one more call into
0xD338 and the subsequent jump to 0xD360, the ex-
ecution jumps to the Second Stage.

We write D7 (-41) to current position, turning
the jump into a jump to execute the Stage 2:

D33A

S2 payload (executed) JR -41 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
D7

One last note before moving on to what Stage 2
will do for us: as with most things in this exploit, en-
tering the Stage 2 payload isn’t as straightforward as
it should be, and this time it’s because the SNES and
the DMG run at different clock speeds and framer-
ates. It takes 351,120 cycles for the DMG to run one
frame, and 357,366 for the SNES to run one frame.
Each side polls the inputs once per their frame, and
the SNES side updates the inputs that the DMG
side reads once per frame. Since each SNES frame
takes slightly longer, the SNES regularly skips up-
dating inputs for one full DMG frame, causing the
input to be duplicated.15

This clock skew slip happens about every 56
DMG frames. (Sometimes it’s 57 frames between
slips due to slipping.) It takes a full 86 frames
to input the Stage 2 sequence because there are
39 bytes of payload plus 4 bytes total for prologue
and epilogue jump instructions, and each byte takes
2 frames to enter as a result of working around
L+R and U+D combinations being nulled out. This
means we have to cope with at least one clock skew
slip and because 86 isn’t that much bigger than 2*56

15This has implications even outside of TAS’ing: If you hold a button for a single frame you risk that input being lost (if
the previous frame had no buttons being pressed, that single frame’s press could be overwritten with the no buttons pressed
frame from before) or your buttons could be held for an extra frame (even though you let go, you hit right before the skew so
your buttons are sent for an additional frame). Both of these behaviors could cause a talented realtime player to question their
abilities as they wouldn’t have any idea that the console had been the cause of their input being wrong.

13

Figure 6 – Sending payload (combos injected by first controller)

xC xDx0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xE xF
INC C DEC C0x NOP LD BC,d16 LD (BC),A INC BC INC B DEC B LD B,d8 RLCA LD (a16),SP ADD HL,BC LD A,(BC) DEC BC LD C,d8 RRCA
INC E DEC E1x STOP 0 LD DE,d16 LD (DE),A INC DE INC D DEC D LD D,d8 RLA JR r8 ADD HL,DE LD A,(DE) DEC DE LD E,d8 RRA
INC L DEC L2x JR NZ,r8 LD HL,d16 LD (HL+),A INC HL INC H DEC H LD H,d8 DAA JR Z,r8 ADD HL,HL LD A,(HL+) DEC HL LD L,d8 CPL
INC A DEC A3x JR NC,r8 LD SP,d16 LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),d8 SCF JR C,r8 ADD HL,SP LD A,(HL-) DEC SP LD A,d8 CCF
LD C,H LD C,L4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B,(HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,(HL) LD C,A
LD E,H LD E,L5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D,(HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,(HL) LD E,A
LD L,H LD L,L6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H,(HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,(HL) LD L,A
LD A,H LD A,L7x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD A,E LD A,(HL) LD A,A
ADC A,H ADC A,L8x ADD A,B ADD A,C ADD A,D ADD A,E ADD A,H ADD A,L ADD A,(HL) ADD A,A ADC A,B ADC A,C ADC A,D ADC A,E ADC A,(HL) ADC A,A
SBC A,H SBC A,L9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC A,B SBC A,C SBC A,D SBC A,E SBC A,(HL) SBC A,A
XOR H XOR LAx AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XOR C XOR D XOR E XOR (HL) XOR A
CP H CP LBx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP (HL) CP A

CALL Z,a16 CALL a16Cx RET NZ POP BC JP NZ,a16 JP a16 CALL NZ,a16 PUSH BC ADD A,d8 RST 00H RET Z RET JP Z,a16 PREFIX CB ADC A,d8 RST 08H
CALL C,a16Dx RET NC POP DE JP NC,a16 CALL NC,a16 PUSH DE SUB d8 RST 10H RET C RETI JP C,a16 SBC A,d8 RST 18H

Ex LDH (a8),A POP HL LD (C),A PUSH HL AND d8 RST 20H ADD SP,r8 JP (HL) LD (a16),A XOR d8 RST 28H
Fx LDH A,(a8) POP AF LD A,(C) DI PUSH AF OR d8 RST 30H LD HL,SP+r8 LD SP,HL LD A,(a16) EI CP d8 RST 38H

from http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html

Figure 7 – Z80 opcodes that can be sent through SGB input filtering.

the slip position must be relatively near the middle
to avoid having to deal with two slips.16

3.8 Stage 2: Sending packets to es-
cape SGB from very little space.

We have just 39 bytes to work with in the Stage 2
payload we just wrote and we need to make the most
out of every last byte. Fortunately, Pokémon Red
already contains a routine that sends a command
packet into the SNES. The catch is the code to send
that packet is in another ROM bank (0x1C) that

we need to switch to. While the ROM bank can be
switched by a single write, the game NMI routine
(which runs every frame) does not save the bank -
it switches to one stored in another memory address
instead. Two writes are needed to reliably change
the bank which would take too much space; however,
the common part of ROM (mapped regardless of
the bank) has a function that does something, then
switches banks and returns. That function makes
for a very useful gadget! The entry address for this
function is 0x00AF, with register A holding the bank
number.

16The movie we used was 2(prologue)+5(banksetting)+6(packetsend)+5(packetsend)+1(nop-for-
slip)+2(hang)+11(packet1)+7(packet2)+2(unused)+2(epilogue)=43 bytes. We later discovered
a different method where the smallest possible extended payload would have been 2(pro-
logue)+5(banksetting)+6(packetsend)+2(hang)+13(packet)+2(epilogue)=30 bytes which is still too much to input without a
slip due to our data rate being restricted to one nibble at a time, although the packet data’s 0x00 portion could potentially be
used for this purpose.

17It could be possible to use just one, by putting the NMI routine in a memory-mapped SGB packet register, but we decided
not to, as we would need full exploit abilities just to test if this method actually works because the emulator isn’t accurate
enough to test with.

14

We need to send two separate command pack-
ets, described below.17 The packets aren’t a full 16
bytes in length like they appear to be, but 11 and 7
bytes; the tails of the packets are ignored, so we let
the packet payloads overrun into whatever happens
to be next. After sending the packets, we have no
use for the DMG anymore, so we hang the Z80 by
entering a tight loop.

The following Stage 2 assembly code is loaded
into 0xD33A—D360.

1 ; The gadget takes a new bank number in A.
3E 1C LD A, #$1C

3 ; Ca l l the bankswitch gadget .
CD AF 00 CALL $00af

5 ; The address o f the f i r s t packet to send .
21 4D D3 LD HL, packet1

7 ; Ca l l packet send rou t in e .
CD EB 5F CALL $5feb

9
; The low byte o f address o f the 2nd packet .

11 ; used to compensate input s l i p p i n g .
2E 58 LD L , 0x58

13 00 NOP
; Cal l packet send rout in e .

15 CD EB 5F CALL $5feb

17 18 FE JR −2 ; Hang the DMG.

19 packet1 : ; 0xd34d
DB 0x79 , 0x00 , 0x18 , 0x00 , 0x06 , 0xad ,

21 0x12 , 0x42 , 0x30 , 0xfb , 0x40

23 packet2 : ; 0xd358
DB 0x91 , 0x18 , 0x42 , 0x00 , 0x00 , 0x18 ,

25 0x00 , 0x00 , 0x00

Originally, the LD L, 0x58 ; NOP sequence was
LD HL, 0xD358 but we discovered that the transfer
routine leaves the upper eight bits of the address in
the H register at the end of the transfer. The trans-
fer end of the packet at 0xD34D will be 0xD35D, so
the H register will be D3, which is exactly the value
we want for the next packet, so we can save one byte
by just loading the L register. The saved byte can
taken to be NOP (00).

The repeated input can land on two inputs of
the same byte, or the last input of one byte and
first input of next. The latter is much better, since
for any byte pair, it is possible to construct three
valid inputs. However, the first is much worse: The
byte will be forced to 00, and even more unfortu-
nately, the frame rules always cause the duplication

to occur in a bad way. The 00 freed from only
loading L is close enough to the middle that this
byte can be targeted for duplication. It turned out
that the emulator doesn’t emulate the input slipping
quite accurately and we (dwangoAC) had to do a lot
of tedious trial and error testing to time the input
correctly.18 The offset between emulator and real
hardware turned out to be eight frames, which we
adjusted by adding eight frames of no input into the
file sent to the bot prior to exiting the menu.

3.9 Exploiting DMG→SGB com-
mand packets for gaining a
foothold on SNES

The Super Game Boy command packet protocol has
two nifty commands for gaining control of the SNES.
0x79 writes arbitrary data to an arbitrary memory
location, while 0x91 sets the NMI vector and jumps
to an arbitrary address. Both commands are real,
documented command packets; they are not undoc-
umented debug commands.

Since the Stage 2 executing on the DMG is so
small we needed to minimize the number of pack-
ets required. The SNES’s controller registers are
memory-mapped I/O registers that automatically
update each video frame when enabled. It is possible
to execute code from those registers but it isn’t par-
ticularly easy to do so, largely because it is very un-
safe to execute anything from those registers when
they are in the middle of an update. (There are all
sorts of intermediate stages.)

The solution is to find some way for the SNES
CPU to waste time during that update elsewhere.
The NMI vector and the NMI handler are perfect
for this: when enabled, it starts running just before
the register starts updating, so we just need an NMI
handler that wastes somewhere between roughly 4
and 260 scanlines so it hits after the current NMI
returns but before the next NMI starts. Scanning
descriptions of various SNES I/O registers, a useful
one seems to be $4212, which has bit 7 set when
the console is performing a vertical retrace. The
NMI occurs immediately after the vertical retrace
starts and the retrace lasts for about 40 scanlines,
so waiting for $4212 bit 7 to clear works out per-
fectly. Since the retrace bit is bit 7 and the SNES
CPU happens to be in a mode where the A regis-

18Each blind test took about 5 minutes, as we had to play back the entire movie before reaching the point where we could
determine if it worked and we weren’t entirely certain it would work at all, but eventually we discovered the correct offset.

19Based on the setting of a flags register bit that selects between an 8– and 16–bit A register.

15

ter is 8 bits wide,19 numbers with bit 7 set show as
negative, so it’s trivial to branch on those using BMI
instruction. Handily enough, the LDA instruction
that loads the memory address into the A register
sets the condition flags, so we can just loop around
that one instruction using BMI.

After the loop, we must return from the NMI.
This is done using the RTI instruction, so the final
NMI handler looks like:

1 loop :
AD 12 42 LDA $4212 ; Read 0x4212 .

3 30 FB BMI loop ; Loop while b i t 7 i s s e t .
40 RTI ; Return from NMI.

This handler trashes the A register, which is gen-
erally considered bad style, but we can get away
with doing that.

We send two packets; the first one writes six
bytes (AD 12 42 30 FB 40) into the memory ad-
dress 0x001800. This is the NMI routine.

79 ; Write Memory
2 00 18 00 ; Target Address

06 ; S i z e
4 AD 12 42 30 FB 40 ; Content

Figure 8 – Inception

The second one jumps to 0x004218 (which is the
start of the controller registers), with the NMI vec-
tor set to 0x001800 (which points to the routine we
just wrote).20

91 ; Jump
2 18 42 00 ; Jump Target

00 18 00 ; NMI Vector

3.10 Stage 3: From stable loop in au-
topoller registers to loading pay-
loads.

(480 bytes per second; 60 payload bytes per second.)
We have transferred control flow to controller

registers, but we aren’t done just yet. The controller
registers are only eight bytes in size, and normally
not all bits are even controllable. However, there are
some tricks we can play to control all the bits. First,
even though a standard SNES controller only has 12
buttons, the autopoller reads all 16 bits. Normally
the last four bits are controller type identification
bits. Since those bits are read from the controller,
the controller can set those bits to whatever it likes,
including changing those bits every frame. Second,
the last four bytes of the register are read from the
second data line that is normally not connected to
anything unless there is a multitap device. It isn’t
possible to just connect a multitap device whenever
we like as the game will softlock. Fortunately, it is
possible to just connect the second controller so that
it shares all the other pins (+5V, ground, latch and
clock), but use the second data pin instead the first.

These two tricks allow controlling all 128 bits in
the controller registers which gives us 8 bytes of data
per frame. While this is a huge improvement over
our Stage 1 effective data rate of a nibble per frame
it still only amounts to a datarate of 300 bytes per
frame because three of those 8 bytes need to be used
for looping in the controller registers, leaving only
five bytes usable. (Although, as you’ll see, only one
byte of payload data can be sent per frame.)

Specifically, to loop successfully in the controller
registers we need to wait for the NMI induced in-
terrupt in order to avoid the NMI happening at an
unpredictable instruction (because the NMI trashes
A) and then jump to the start of the controller reg-
ister. Then there is issue that NMI is not initially

20We considered putting the NMI code into the SGB packet receive buffer, which is a memory-mapped I/O register (and
presumably can be executed by the CPU). We decided against this since the SGB emulation in BSNES is quite questionable
and we didn’t know if it would work, largely due to the difficulty of testing it.

16

enabled, even if the handler is set, so the first frame
has to enable the NMI handler. Fortunately, this
can be done rather compactly:

1 loop :
A9 81 LDA #$81

3 8D 00 42 STA $4200 ; Set 0x4200 = 0x81 (
au t opo l l e r enabled , IRQ disab led , NMI
enabled)

CB WAI
5 80 F8 BRA loop

Since the code is idempotent, this is good time to
switch from sending input in once per frame to send-
ing input in once per latch poll. The way the SGB
BIOS polls the controllers is completely crazy, often
polling more than once per frame, polling too many
bits, trying to poll but leaving the latch held high,
etc. Because this is a somewhat common problem
even in other games, the bot connected to the con-
troller ports has a mode where it synchronizes what
input to send based on the edge of each video frame
(i.e. 60ths of a second in a polling window) by keep-
ing track of how much time has elapsed; if the game
asks for input more than once on the same frame
we give it that frame’s input again until we know
it is time for the next frame’s polls, which means
we can follow the polling no matter how crazy it is.
The obvious tradeoff is that this mode is limited to
8 bytes per frame with 4 controllers attached, so we
need to switch the bot’s mode to one that is strictly
polling based, sending the next set of button presses
on each latch. Making that transition can be a bit
glitchy considering it was added as a firmware hack
but because this piece of code is idempotent we can
just spam the same input several times as we only
need it to hit in the range. This happens from frame
12117 to 12212 in the movie.

We now have a stable loop in the controller reg-
isters that we can use to poke some code into RAM.
The five bytes per frame is enough to write one byte
per frame into an arbitrary address in first 8kB of
the SNES’s RAM:

1 LDA #$xx
STA $yyyy

This assembles to five bytes, A9 xx 8D yy yy.
Finally, after the writes, we can use JML (four bytes)

to jump to the desired address. Since the DMG is
still playing some annoying tunes, the first order of
business is to try to crash it. Writing 00 to the clock
control/reset register at 0x6003 should do the trick
by stopping the DMG clock, and in fact this works
in the LSNES emulator, but on a real console the an-
noying tunes keep playing until the DMG corrupts
itself enough to crash completely.21

3.11 Stage 4: Increasing the datarate
even further.

(3840 bytes per second.)
One byte per frame is rather slow as it would take

us several minutes to write our payload at that speed
so we poke the following routine (Stage 4) that reads
8 bytes per frame from the autopoller registers and
writes it sequentially to RAM, starting from 0x1A00
until 0x1B1F into address 0x19000.

SEP #$30 ; Set 8−b i t A and X/Y
2 LDA #$01 ; Set 0x4200 = 0x01

; (au t opo l l e r en , NMI d i s)
4 STA $4200

REP #$10 ; Set 16−b i t X/Y, keep A 8−b i t .
6 LDY #$1A00 ; Load address to wr i t e to .

wait_vblank_start :
8 LDA $4212 ;Wait u n t i l vblank s t a r t s .

BPL wait_vblank_start
10 wait_vblank_end :

LDA $4212 ;Wait u n t i l vblank ends , so the
12 ; new c o n t r o l l e r va lue a r r i v e s .

BMI wait_vblank_end
14 LDX #$4218 ; S ta r t address o f c o n t r o l l e r reg

.
LDA #$00 ; MVN cop i e s 16−b i t amount o f

bytes , even with A being 8 b i t .
16 XBA ; So ensure that the high b i t s are

zero .
LDA #$07 ; A = 7 , copy 8 bytes .

18 PHB ; MVN changes the data bank
register , so save i t .

MVN $7E , $00 ; Copy the 8 bytes from 0
x4218 to RAM. Y i s auto−incremented .

20 PLB ; Restore the data bank register .
CPY #$1B20 ; Have we reached 0x1820?

22 BNE wait_vblank_start ; I f no , wait a frame
and read again .

JML $7E1A08 ; Jump to read payload .

As machine code, e2 30 a9 01 8d 00 42 c2
10 a0 00 1a ad 12 42 10 fb ad 12 42 30 fb

21It’s not a surprise that it behaves differently in the emulator, as the SGB emulation accuracy in BSNES is questionable
in a lot of places; it’s possible that the emulator is triggered on a different edge of the clock than real hardware or something
similar. Regardless, on real hardware the DMG eventually crashes in a way that makes it stop producing sound and while it’s
about the equivalent of driving a car into a brick wall instead of hitting the brakes it at least gets the job done.

17

a2 18 42 a9 00 eb a9 07 8b 54 7e 00 ab c0
20 1b d0 e4 5c 08 1a 7e.

Why jump to eight bytes after the start of the
payload? It turns out that code loads some junk
from what is previously in the controller registers
on the first frame, so we just ignore the first few
bytes and start the payload code afterwards. Eight
bytes per frame still isn’t fast enough, so the rou-
tine this code pokes into RAM is another loader rou-
tine that uses serial controller registers to read eight
bytes eight times per frame, for total of 64 bytes per
frame.

Let’s take a look at the Stage 5 payload:

1 ; 0000 => Current t r a n s f e r address .
; 0002 => Trans fe r end address .

3 ; 0004 => Blocks to t r a n s f e r .
; 0006 => Current t r a n s f e r bank .

5 ; 0008 => 0 : Trans fe r not in p rog r e s s .
; 1 : Trans fe r in p rog r e s s .

7 ; 000C => Blocks t r a n s f e r r e d .
; 0010 => Jump vecto r to next in chain .

9 ; 0020−0027 => Buf f e r
; 0080−00BF => Buf f e r .

11
Sta r t :

13 NOP ; 8 NOPs, for the junk at s t a r t .
NOP

15 NOP
NOP

17 NOP
NOP

19 NOP
NOP

21 SEI
LDA #$00 ; Autopol l o f f , NMI and IRQ o f f .

23 STA $4200

25 REP #$30 ; 16−b i t A/X/Y.

27 LDA #$0000 ; I n i t i a l l y no t r a n s f e r .
STA $0008

29
frame_loop :

31
SEP #$20

33 not_in_vblank : ; Wait u n t i l next vblank ends
LDA $4212

35 BPL not_in_vblank
in_vblank :

37 LDA $4212
BMI in_vblank

39 REP #$20

41 LDA #$0008
STA $0004

43 LDA #$0000
STA $000C

45
rx_block :

47 LDA #$0001
STA $4016

49 LDX #$0003
latch_high_wait :

51 DEX
BNE latch_high_wait

53 STZ $4016
LDX #$0004

55 latch_low_wait :
DEX

57 BNE latch_low_wait

59 LDA #$0000
STA $0020

61 STA $0022
STA $0024

Figure 9 – Now using four controllers!

18

63 STA $0026

65 LDY #$0010
read_loop :

67 LDA $4016
PHA

69 ; Bit 0 => 0020 , Bit 1 => 0024 ,
; Bit 8 => 0022 , Bit 9 => 0026

71 BIT #$0001
BNE b0nz

73 LDA $0020
ASL A

75 BRA b0d
b0nz :

77 LDA $0020
ASL A

79 EOR #$0001
b0d :

81 STA $0020

83 PLA
PHA

85 BIT #$0002
BNE b1nz

87 LDA $0024
ASL A

89 BRA b1d
b1nz :

91 LDA $0024
ASL A

93 EOR #$0001
b1d :

95 STA $0024

97 PLA
PHA

99 BIT #$0100
BNE b8nz

101 LDA $0022
ASL A

103 BRA b8d
b8nz :

105 LDA $0022
ASL A

107 EOR #$0001
b8d :

109 STA $0022

111 PLA
BIT #$0200

113 BNE b9nz
LDA $0026

115 ASL A
BRA b9d

117 b9nz :
LDA $0026

119 ASL A
EOR #$0001

121 b9d :
STA $0026

123
DEY

125 BNE read_loop

127 ;Move the block from 0020 to i t s f i n a l p lace

LDA $000C
129 ASL A

ASL A
131 ASL A

CLC
133 ADC #$0080

TAY
135 LDX #$0020

LDA #$0007
137 MVN $00 , $00

139 ; Increment the counter at 000C,
; decrement the count at 0004 .

141 ; I f no more blocks , e x i t .
LDA $000C

143 INA
STA $000C

145 LDA $0004
DEA

147 STA $0004
BEQ exit_rx_loop

149 JMP rx_block
exit_rx_loop :

151
LDA $0008

153 BNE doing_trans f e r
; Okay , setup t r a n s f e r .

155 LDA $0082
CMP #$FF

157 BMI not_jump
; This i s jump , copy the address .

159 STA $12
LDA $0080

161 STA $10
BRA out

163 not_jump :
LDA $0080 ; S ta r t i ng address .

165 STA $0000
LDA $0082 ; Bank .

167 STA $0006
LDA $0084 ; Ending address .

169 STA $0002

171 ; Se l f−modify the move .
LDX #move_instruction

173 LDA $0006
AND #$FF

175 STA $01 ,X

177 ; Enter t r a n s f e r .
LDA #$0001

179 STA $0008

181 ; See you next frame .
JMP no_reset_trans fe r

183
do ing_trans f e r :

185
; Copy the s t u f f to i t s f i n a l p lace in WRAM.

187 LDY $0000
LDX #$0080

189 LDA #$003F
PHB

191 move_instruction :
MVN $40 , $00 ; Bogus bank , w i l l be

19

modi f i ed .
193 PLB

TYA
195 STA $0000

CMP $0002
197 BNE no_reset_trans fer

STZ $0008 ; End t r a n s f e r .
199 no_reset_trans fe r :

; Next frame .
201 JMP frame_loop

out :
203 JMP [$10]

3.12 Stage 5: Transfers of data in
blocks with headers.

(3,840 bytes per second.)
This routine is rather complex, so let’s review

some of its trickier parts.
The serial protocol works by first setting the

latch bit (bit 0) in 0x4016, then clearing it, then
reading the appropriate number of times from
0x4016 (port #1) and 0x4017 (port #2). Bit 0 of
the read result is the first data line value, while bit
1 is the second data line value. After each read, the
line is automatically clocked so the next bit is read.
The two port latch lines are connected together; bit
0 of 0x4016 controls both.

The bot is slow, so we wait after setting/clearing
the latch bit. We properly reassemble the input in
the usual order of the controller registers, since we
have CPU time available to do that. Since we read
16-bit quantities, port 0x4017 is read as high 8 bits,
so the data lines there appear as bits 8 and 9.

To handle large payloads, the payload is divided
into blocks with headers. Each header tells where
the payload is to be written, or, if it is the last block,
where to begin execution.

The routine uses self-modifying code: The source
and destination banks in MVN are fixed in code, but
this code is dynamically rewritten to refer to correct
target bank.

3.13 Automating the Movie Creation
Since manually editing, recompiling and transform-
ing inputs gets old very fast when iterating payload
ROMs, tools to automate this are very useful. This
is the whole reason for having Stage 5 use block
headers. Furthermore, to not have one person do-
ing the work every time, it’s helpful to have a tool
that even script-kiddies can run. The tool to do this

is a Lua script that runs inside the emulator (The
LSNES emulator has built-in support for running
Lua scripts, with all sorts of functions for manipu-
lating the emulator.)

1 d o f i l e ("sgb−a r b i t r a r yw r i t e . lua ") ;

3 make_movie = func t i on (f i l ename)
write_sgb_data (" s tage4 . dat") ;

5 write_8bytes_data (" s tage5 . dat") ;
write_xfer_block (f i l ename , 0x8000 , 0

x7E8000 , 0x4000 , 8) ;
7 write_xfer_block (f i l ename , 0x10000 ,

0x7F8000 , 0x7A00 , 8) ;
write_jump_block (0 x7E8051 , 8) ;

9 p r i n t ("Done") ;
end

This code, the main Lua script, refers to four
external files. “stage4.dat” contains the memory
writes to load the Stage 4 payload from Section 3.11
while executing in the controller registers.

This file contains the Stage 4 payload, plus the
ill-fated attempt to shut up the DMG. (As noted
previously, it dies on its own later.) The first line
containing 0x001900 is the address to jump to after
all bytes are written.

2) “stage5.dat”, which is the machine code cor-
responding to the Stage 5 loader.

3) A filename taken as a parameter, which is the
payload ROM to use. As you can see, the Lua script
fixes the memory mappings, but this is okay, as those
are not difficult to modify.

The specified memory mappings copy a sixteen
kilobyte byte region starting from file offset 0x8000
into 0x7E8000, and the 0x7A00 byte region start-
ing from offset 0x10000 into 0x7F8000. (The first
32kB is assumed to contain initialization code for
stand-alone testing, but we don’t care about that.)

4) “sgb-arbitrarywrite.lua”, which is just a
function library.

−−sgb−a r b i t r a r yw r i t e . lua
2 l o = func t i on (a) return b i t . band (a , 0xFF) ;

end
mid = func t i on (a) return b i t . band (b i t .

l r s h i f t (a , 8) , 0xFF) ; end
4 h i = func t i on (a) return b i t . band (b i t . l r s h i f t

(a , 16) , 0xFF) ; end

6 s e t8 = func t i on (obj , port , c o n t r o l l e r , index
, va l)

for i =0,7 do obj : set_button (port ,
c o n t r o l l e r , index + i , b i t . t e s t_a l l (b i t .
l s h i f t (val , i) , 128)) ; end

8 end

20

10
add_frame=func t i on (a , b , c , d , e , f , g , h ,

sync)
12 l o c a l frame = movie . blank_frame () ;

frame : set_button (0 , 0 , 0 , sync) ;
14 s e t8 (frame , 1 , 0 , 0 , b) ;

s e t8 (frame , 1 , 0 , 8 , a) ;
16 s e t8 (frame , 1 , 1 , 0 , f) ;

s e t8 (frame , 1 , 1 , 8 , e) ;
18 s e t8 (frame , 2 , 0 , 0 , d) ;

s e t8 (frame , 2 , 0 , 8 , c) ;
20 s e t8 (frame , 2 , 1 , 0 , h) ;

s e t8 (frame , 2 , 1 , 8 , g) ;
22 movie . append_frame (frame) ;

end
24

write_sgb_data = func t i on (f i l ename)
26 l o c a l jump_address = n i l ;

l o c a l f i l e , e r r = i o . open (f i l ename) ;
28 i f not f i l e then e r r o r (e r r) ; end

for i in f i l e : l i n e s () do
30 i f i == "" then

e l s e i f not jump_address then
32 jump_address = tonumber (i) ;

else
34 l o c a l a , b = s t r i n g . match (i , "(%w+)%s

+(%w+)") ;
a = tonumber (a) ;

36 b = tonumber (b) ;
add_frame (0xA9 , b , 0x8D , l o (a) , mid (a)

, 0xCB, 0x80 , 0xF8 , t rue) ;
38 end

end
40 add_frame (0x5C , l o (jump_address) , mid (

jump_address) , h i (jump_address) , 0 , 0 , 0
x80 , 0xF8 , t rue) ;

f i l e : c l o s e () ;
42 end

44 write_8bytes_data = func t i on (f i l ename)
l o c a l f i l e , e r r = i o . open (f i l ename) ;

46 i f not f i l e then e r r o r (e r r) ; end
while t rue do

48 l o c a l data = f i l e : read (8) ;
i f not data then break ; end

50 l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte (data , 1 , 8) ;
add_frame (a , b , c , d , e , f , g , h , t rue) ;

52 end
f i l e : c l o s e () ;

54 end

56 write_xfer_block = func t i on (f i l ename ,
f i l e o f f s e t , t a rge taddre s s , s i z e , speed)

l o c a l f i l e , e r r = i o . open (f i l ename) ;
58 i f not f i l e then e r r o r (e r r) ; end

f i l e : seek (" s e t " , f i l e o f f s e t) ;
60 while s i z e % (8 ∗ speed) ~= 0 do s i z e =

s i z e + 1 ; end
l o c a l endaddr = b i t . band (t a r g e t add r e s s +

s i z e , 0xFFFF) ;
62 −−Write the header .

add_frame (l o (t a r g e t add r e s s) , mid (
t a r g e t add r e s s) , h i (t a r g e t add r e s s) , 0 , l o
(endaddr) , mid (endaddr) , 0 , 0 , t rue) ;

64 for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e) ; end

66 −−Write ac tua l data .
for i = 0 , s i z e /8−1 do

68 l o c a l data = f i l e : read (8) ;
i f data == n i l then data = s t r i n g . char
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ; end

70 while #data < 8 do data = data . . s t r i n g
. char (0) ; end
l o c a l a , b , c , d , e , f , g , h = s t r i n g .
byte (data , 1 , 8) ;

72 add_frame (a , b , c , d , e , f , g , h , i %

Figure 10 – Why should we wait for next frame? Go sub-frame! (in green)

21

speed == 0) ;
end

74 f i l e : c l o s e () ;
end

76
write_jump_block = func t i on (address , speed)

78 add_frame (l o (address) , mid (address) , h i (
address) , 1 , 0 , 0 , 0 , 0 , t rue) ;

for i =2, speed do add_frame (0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , f a l s e) ; end

80 end

This script assumes that the loaded movie causes
the SNES to jump into controller registers and then
enable NMI, using the methods described earlier. It
appends the rest of the stages and payload to the
movie. Also, since it edits the loaded input, it is
possible to just load state near the point of gaining
control of the SNES and then append the payload
for very fast testing. (Otherwise it would take about
two minutes for it to reach that point when execut-
ing from the start.)

3.14 Stage 6: Twitch Chat Interface

After successfully transferring our payload, execu-
tion of the exploit payload (created by p4plus2) can
officially begin. There are three primary states to
the final payload: (1) Reset, (2) the Chat Interface,
and (3) a TASVideos Webview.

3.14.1 The Reset

Because much of the hardware state is either un-
known or unreliable at the point of control transfer
we need to initialize much of the system to a known
state. On the SNES this usually implies setting a
myriad of registers from audio to display state, but
also just as important is clearing out WRAM such
that a clean slate is presented to the payload. Once
we have a cleared state it is possible to perform
screen setup.

In the initial case we set the tile data and tilemap
VRAM addresses and set the video made to 0x01,
which gives us two layers of 4–bit depth (Layers 1
and 2) and a single layer of 2–bit depth, Layer 3.

Layer 1 is used as a background which displays
the chat interface, while Layer 2 is used for emoji
and text. Layer 3 is unused. A special case for the
text and emoji however is Red’s own text which is
actually present on the sprite layer, allowing code to
easily update that text independently.

3.14.2 The Chat Interface

Now that we have the screen itself set up and able
to run we need to stream data from Twitch chat
to the SNES. But we only have 64 bytes per frame
available to support emoji as well as the alphabet,
numbers, various symbols, and even special triggers
for controlling the payload execution. This complex-
ity quickly bogged down our throughput per frame,
so we created special encodings for performance! On
average the most common characters will be a-z in
lower case, which conveniently fit into a 5–bit en-
coding with several more character to spare.

The SNES has both 16–bit and 8–bit modes, so
in 16–bit mode we can easily process three charac-
ters with a bit to spare! But what about the rest of
our character space? Well, we have a single bit re-
maining and can set it to allow the remaining char-
acters to be alternatively encoded. The alternate
encoding allowed for two 7 bit characters, with an
additional toggle bit on the second character.

BXXXXXXX XXXXXXXX
2 i f (E) goto spec ia l_encod ing

i f (!E) goto normal_encoding
4 normal_encoding :

0AAAAABB BBBCCCCC
6 A = f u l l cha rac t e r 1

B = f u l l cha rac t e r 2
8 C = f u l l cha rac t e r 3

spec ia l_encod ing :
10 1XXXXXXX SXXXXXXX

i f (S) goto special_command
12 i f (! S) goto read_two_characters

read_two_characters :
14 1AAAAAAA 0BBBBBBB

A = f u l l cha rac t e r 1
16 B = f u l l cha rac t e r 2 (used for

Red ’ s t ex t)
special_command :

18 1AAAAAAA 1BBBBBBB
A = f u l l cha rac t e r 1

20 B = Command byte

22

rebelofold: WUT
55: whaaat
Hi Mom!!
georgemichaels: we're the twitch
 chat
gallerduse: HI COUCH
kyiroo: //
ch1ll1e:
zoranthebear: WOOOOOO
ederarm: Lmao
liontheturtle: OMFG
devinlock: Oh my
wallydrag: HI MOM
toastypls: MATRIX dear

molten-: WHAT
asdyyy: start9 dor: LOL
gadwin100: rekt
andykarate: fdg
tovargent:
soulroarn: WHAT?
lukeskywars: UP
k1dsmirk: heloooo!!!!
love-struck-: HULLO
HI MOM!
 anthecaiun:

Chat

Figure 11 – Twitch chat!

The most important command was EE, cho-
sen very arbitrarily, which meant “transition state.”
The state transition would then toggle between the
TASVideos website and chat interface. Also worth
noting is that any character with a value of 00 was
considered a null character and was not displayed
for synchronization purposes.

3.15 The Website

The website itself is not very complicated, rather
just interesting to mention to take advantage of
mode 0x03 which allowed us to render a 256–color
image, rather than the standard 16–color images
from the prior section. The only caveat was that we
had to make a quick tool to remove duplicate tiles to
optimize the tile data to fit in VRAM. Background
colors were controlled by tweaking the palette data
rather than the image itself, as the SNES is very
poor at manipulating raw tile data due to its planar
pixel format.

3.16 Outside of the SNES

The bot was connected to the console through the
controller ports and a single wire going to the reset
pin on the expansion board, meaning that from an

external perspective the hardware was completely
unmodified. The bot itself was connected by a USB
serial interface to a MacBook Pro running Linux.
The source of the button presses being sent to the
bot was in the form of a continuous bitstream repre-
senting the state of all buttons for each frame. Once
the payload was fully written and the Twitch chat
interface was complete the bitstream transitioned
from being pre-created movie content to a bitstream
in the format the chat interface payload needed it
in, with 5-bit and 7-bit encodings for characters and
emoji. This was controlled by the python scripts22
that relied on a script to identify when Red, the
player inside of the Pokémon Red game, said var-
ious things. The script also triggered things that
TASBot, the robot holding the replay device, would
say via the use of espeak, which allowed us to create
a conversation between TASBot and Red.

Finally, as part of the script we predefined pe-
riods where we would “deface” the TASVideos web-
site by changing it to different colors; this worked
by showing an image on the SNES as well as liter-
ally defacing the actual website. Finally, the script
was built with the ability to send commands to a
serial-controlled camera, but truth be told we ran
out of time to test it so we used a bit of stage magic
to pretend like Twitch chat was interacting with the
camera by typing directions to move it, and we had
a helpful volunteer running the camera for us.

3.17 Live Performance
These exploits were unveiled at AGDQ 2015. They
were streamed live to over 100,000 people on Jan-
uary 4th with a mangled Python script that didn’t
trigger the text for Red properly, then again on Jan-
uary 11th with the full payload. The run was very
well received and garnered press coverage from Ars
Technica23 among others and resulted in substan-
tially more interest in TASBot and the art of arbi-
trary code execution on video games than had ex-
isted previously. Most importantly, the TAS por-
tions of the marathon where the exploit was fea-
tured helped raise over fifty thousand dollars di-
rectly to the Prevent Cancer Foundation. Overall,
the project was a resounding success, well worth the
substantial effort that our team put into it.

22https://github.com/TheAxeMan301/PptIrcBot
23Pokémon Plays Twitch: How a Robot got IRC Running on an Unmodified SNES by Kyle Orland

23

4 This PDF is also a Gameboy exploit that displays
the “Pokémon Plays Twitch” article!

The idea for this polyglot is to embed the con-
tents of the previous article in this fine issue of
PoC‖GTFO in such a way that it shows on when
played as an LSNES movie. So now you can use
your copy of the journal to exploit your hardware
and read “Pokémon Plays Twitch” on your TV. This
way, we hope to start a tradition of articles being
viewable on the hardware of the article!

LSNES supports two kinds of movie files, which
might better be thought of as input recording files.
The older format is ZIP based and formally speci-
fied, while the new one is binary and custom. The
new binary format has no official specs, but start-
ing a PDF with a ZIP signature would now trigger
Adobe’s blacklist—clearly, someone at the company
must have disliked something about one of our pre-
vious releases. So the new, non-ZIP LSMV binary
format is the one that we’ll use.

The buffers for read and write calls for movie
data are straight out of the movie data in memory.
One unintended benefit of the new format is that
it is much easier to write from SIGSEGV or similar
signal handlers. (The memory allocator cannot be
trusted.)

The binary LSMV format is chunk-based. The
“lsmv” magic must be at offset 0; we can’t have
any appended data. So the PDF header and con-
tent must be added in a dummy chunk early in the
LSMV, and the ZIP and PDF footer must be added
at the end of the file, in another dummy chunk (see
included diagram).

A clean version of the LSMV file has been sub-
mitted to TASVideos.24 You can play this polyglot
on a modified LSNES with the hybrid emulation
core using BSNES and Gambatte or, if you have
the required hardware, on the real stuff!

actual content

dummy comment

header
chunk header

LSMV

actual content
object header

object footer
PDF footer

PDF ZIP

F
ile actual content

chunk header

up to 1kb
tolerated

ZIP files
are parsed
bottom-up

dummy chunk

dummy chunk

dummy object

Be warned that none of these approaches is triv-
ial. We include detailed howtos with the zip con-
tents of this issue.25

24http://tasvideos.org/4947S.html
25unzip -j pocorgtfo10.pdf pokemon_plays_twitch/sgbhowto.pdf

24

25

5 SWD Marionettes; or,
The Internet of Unsuspecting Things

by Micah Elizabeth Scott

Greetings, neighbors! Let us today gather to cel-
ebrate the Internet of Things. We live in a world
where nearly any appliance, pet, or snack food can
talk to the Cloud, which sure is a disarming name for
this random collection of computers we’ve managed
to network together. I bring you a humble PoC to-
day, with its origins in the even humbler networking
connections between tiny chips.

5.1 Firmware? Where we’re going,
we don’t need firmware.

I’ve always had a fascination with debugging inter-
faces. I first learned to program on systems with
no viable debugger, but I would read magazines in
the nineties with articles advertising elaborate and
pricey emulator and in-circuit debugger systems.
Decades go by, and I learn about JTAG, but it’s
hard to get excited about such a weird, wasteful, and
under-standardized protocol. JTAG was designed
for an era when economy of silicon area was critical,
and it shows.

More years go by, and I learn about ARM’s Se-
rial Wire Debug (SWD) protocol. It’s a tantalizing
thing: two wires, clock and bidirectional data, give
you complete access to the chip. You can read or
write memory as if you were the CPU core, in fact
concurrently while the CPU core is running. This is
all you need to access the processor’s I/O ports, its
on-board serial ports, load programs into RAM or

flash, single-step code, and anything else a debug-
ger does. I took my first dive into SWD in order to
develop an automated testing infrastructure for the
Fadecandy LED controller project. There was much
yak shaving, but the result was totally worthwhile.

More recently, Cortex-M0 microcontrollers have
been showing up with prices and I/O features com-
petitive with 8-bit microcontrollers. For example,
the Freescale MKE04Z8VFK4 is less than a dollar
even in single quantities, and there’s a feature-rich
development board available for $15. These micros
are cheaper than many single-purpose chips, and
they have all the peripherals you’d expect from an
AVR or PIC micro. The dev board is even compat-
ible with Arduino shields.

In light of this economy of scale, I’ll even con-
sider using a Cortex-M0 as a sort of I/O expander
chip. This is pretty cool if you want to write micro-
controller firmware, but what if you want something
without local processing? You could write a sort
of pass-through firmware, but that’s extra complex-
ity as well as extra timing uncertainty. The SWD
port would be a handy way to have a simple remote-
controlled set of ARM peripherals that you can drive
from another processor.

Okay! So let’s get to the point. SWD is neat,
we want to do things with it. But, as is typical
with ARM, the documentation and the protocols are
fiercely layered. It leads to the kind of complexity
that can make little sense from a software perspec-
tive, but might be more forgivable if you consider
the underlying hardware architecture as a group of
tiny little machines that all talk asynchronously.

The first few tiny machines are described in the
250-page ARM Debug Interface Architecture Spec-
ification ADIv5.0 to ADIv5.2 tome.26 It becomes
apparent that the tiny machines must be so tiny be-
cause of all the architectural flexibility the designers
wanted to accommodate. To start with, there’s the
Debug Port (DP). The DP is the lower layer, clos-
est to the physical link. There are different DPs for
JTAG and Serial Wire Debug, but we only need to
be concerned with SWD.

We can mostly ignore JTAG, except for the pro-
cess of initially switching from JTAG to SWD on

26http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031c/index.html

26

At least 50 clocks
With SWDIOTMS

HIGH

At least 50 clocks
With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS

Figure 12 – JTAG-to-SWD sequence timing

systems that support both options. SWD’s clock
matches the JTAG clock line, and SWD’s bidirec-
tional data maps to JTAG’s TMS signal. A magic
bit sequence in JTAG mode on these two pins will
trigger a switch to the SWD mode, as shown in Fig-
ure 12.

SWD will look a bit familiar if you’ve used SPI
or I2C at all. It’s more like SPI, in that it uses a
fast and non-weird clocking scheme. Each proces-
sor’s data sheet will tell you the maximum SWD
speed, but it’s usually upwards of 20 MHz. This
hints at why the protocol includes so many asyn-
chronous layers: the underlying hardware operates
on separate clock domains, and the debug port may
be operating much faster or slower than the CPU
clock.

Whereas SPI typically uses separate wires for
data in and out, SWD uses a single wire (it’s in
the name!) and relies on a “turnaround” period to
switch bus directions during one otherwise wasted
clock cycle that separates groups of written or re-
turned bits. These bit groups are arranged into tiny
packets with start bits and parity and such, using
turnaround bits to separate the initial, data, and
acknowledgment phases of the transfer. For exam-
ple, see Figures 13 and 14 to execute read and write
operations and for all the squiggly details on these
packets, the tome has you covered starting with Fig-
ure 4-1.

These low-level SWD packets give you a
memory-like interface for reading and writing reg-
isters; but we’re still a few layers removed from the
kind of registers that you’d see anywhere else in the
ARM architecture. The DP itself has some registers
accessed via these packets, or these reads and writes
can refer to registers in the next layer: the Access
Port (AP).

The AP could really be any sort of hardware that
needs a dedicated debug interface on the SoC. There
are usually vendor specific access ports, but usually

you’re talking to the standardized MEM-AP which
gives you a port for accessing the ARM’s AHB mem-
ory bus. This is what gives the debugger a view of
memory from the CPU’s point of view.

Each of these layers are of course asynchronous.
The higher levels, MEM-AP and above, tend to
have a handshaking scheme that looks much like
any other memory mapped I/O operation. Write
to a register, wait for a bit to clear, that sort of
thing. The lower level communications between DP
and AP needs to be more efficient, though, so reads
are pipelined. When you issue a read, that trans-
action will be returning data for the previous read
operation on that DP. You can give up the extra
throughput in order to simplify the interface if you
want, by explicitly reading the last result (without
starting a new read) via a Read Buffer register in
the DP.

This is where the Pandora’s Box opens up. With
the MEM-AP, this little serial port gives you full ac-
cess to the CPU’s memory. And as is the tradition
of the ARM architecture, pretty much everything is
memory-mapped. Even the CPU’s registers are in-
directly accessed via a memory mapped debug con-
troller while the CPU is halted. Now everything
in the thousands of pages of Cortex-M and vendor-
specific documentation is up for grabs.

27

P
ar

ity

001Tr
n

S
to

p

P
ar

ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]

Figure 13 – Serial Wire Debug successful read operation

P
a

ri
ty

T
rn001T
rn

S
to

p

P
a

ri
ty

A
P

n
D

P

0

S
ta

rt

A[2:3]

P
a

rk WDATA[0:31]

Wire driven by: Host Target Host

Clock

ACK[0:2]RnW

Figure 14 – Serial Wire Debug successful write operation

5.2 Now I’m getting to the point.

I like making tools, and this seems like finally the
perfect layer to use as a foundation for something
a bit more powerful and more explorable. Combin-
ing the simple SWD client library I’d written earlier
with the excellent Arduino ESP8266 board support
package, attached you’ll find esp8266-arm-swd,27
an Arduino sketch you can load on the $5 ESP8266
Wi-Fi microcontroller. There’s a README with
the specifics you’ll need to connect it to any ARM
processor and to your Wi-Fi. It provides an HTTP

GET interface for reading and writing memory.
Simple, joyful, and roughly equivalent security to
most Internet Things.

These little HTTP requests to read and write
memory happen quickly enough that we can build
a live hex editor that continuously scans any visible
memory for changes, and sends writes whenever any
value is edited. By utilizing all sorts of delightful
HTML5 modernity to do the UI entirely client-side,
we can avoid overloading the lightweight web server
on the ESP8266.

This all adds up to something that’s I hope could
27unzip pocorgtfo10.zip esp8266-arm-swd.zip

28

2 < l i>

Turn the LED
4 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100800"> red ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200800"> green ,
6 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300000"> blue ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00200000"> cyan ,
8 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00100000"> pink ,
<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00000000"> whi t e i sh , or
10 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x40048008=0&0x400 f f014=0x00300800&0

x400 f f000=0x00300800"> o f f
</ l i>

12 < l i>
Now <a i s="swd−async−ac t i on " href="/ api / ha l t "> ha l t the CPU and l e t ’ s have some

sc ra t ch RAM:
14 <p>

<swd−hexed i t addr="0x20000000" count="32"></swd−hexed i t>
16 </p>

</ l i>
18 < l i>

<a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0 x20000000=0x22004b0a&.=0x4a0a601a&.=0
x601a4b0a&.=0x4a0b4b0a&.=0x4b0b6013&.=0x2b003b01&.=0x2380d1fc&.=0x6013035b&.=0x3b014b07
&.=0xd1fc2b00&.=0x46c0e7f0&.=0x40048008&.=0x00300800&.=0x400 f f014&.=0x00200800&.=0
x400 f f000&.=0x00123456&.=0 x 7 f f f f f b c &.=0x00000001">

20 Load a smal l program

22 in to the s c ra t ch RAM
</ l i>

24 < l i>
<a i s="swd−async−ac t i on " href="/ api / reg /wr i t e ?0 x3c=0x20000000"> Set the program

counter
26 ()

to the top o f our program
28 </ l i>

< l i>
30 The PC <i>sample</ i> r e g i s t e r ()

t e l l s you where the <i>running</ i> CPU i s
32 </ l i>

< l i>
34 <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0xE000EDF0=0xA05F0001"> Let the CPU

run !
(or t ry a <a i s="swd−async−ac t i on " href="/ api /mem/wr i t e ?0xE000EDF0=0xA05F0005">

s i n g l e s tep)
36 </ l i>

< l i>
38 While the program i s running , you can modify i t s de lay value :

40 </ l i>

Figure 15 – Single Wire Debug from HTML5

29

be used for a kind of literate reverse engineering and
debugging, in the way Knuth imagined literate pro-
gramming. When trying to understand a new plat-
form, the browser can become an ideal sandbox for
both investigating and documenting the unknown
hardware and software resources.

The included HTML5 web app, served by the Ar-
duino sketch, uses some Javascript to define custom
HTML elements that let you embed editable hex
dumps directly into documentation. Since a register
write is just an HTTP GET, hyperlinks can cause
hardware state changes or upload small programs.

There’s a small example of this approach on the
“Memory Mapped I/O” page, designed for the $15
Freescale FRDM-KE04Z board. This one is handy
as a prototyping platform, particularly since the I/O
is 5V tolerant and compatible with Arduino shields.
Figure 15 contains the HTML5 source for that demo.

This sample uses some custom HTML5 ele-
ments defined in /script.js: swd-async-action,
swd-hexedit, and swd-hexword. The swd-async-
-action isn’t so exciting, it’s really just a spe-
cial kind of hyperlink that shows a pass/fail re-
sult without navigating away from the page. The
swd-hexedit is also relatively mundane; it’s just
a shell that expands into many swd-hexword ele-
ments. That’s where the substance is. Any swd--
hexedit element that’s scrolled into view will be
refreshed in a continuous round-robin cycle, and the
content is editable by default. These become simple
but powerful tools.

5.3 Put a chip in it!
While the practical applications of esp8266-arm-swd
may be limited to education and research, I think
it’s an interesting Minimum Viable Internet Thing.
With the ESP8266 costing only a few dollars, any-
thing with an ARM microcontroller could become
an Internet Thing with zero firmware modification,
assuming you can find the memory addresses or
hardware registers that control the parts you care
about. Is it practical? Not really. Secure? Defi-
nitely not! But perhaps take a moment to consider
whether it’s really any worse than the other so-
lutions at hand. Is ARM assembly and HTML5
your kind of fun? Please send pull requests. Happy
hacking

30

31

6 Reversing a Pregnancy Test; or,
Bitch better have my money!

by Amanda Wozniak

The adventure started like most adventures do—
in a dark bar near a technical institute over pints
of IPA. An serial entrepreneur plied me with com-
pliments, alcohol and assurances of a budget wor-
thy of my hourly rate to take an off-the shelf device
and build a sales-pitch demo in support of his natal
company’s fund-raising and growth plan. The goal
was to take approximately zero available fabrication
resources other than myself and spend a couple of
months to make a universally approachable, easy to
use demonstration prototype for a (now utterly de-
funct) startup’s flow strip technology with a hack-a-
thon patented Internet-of-Things interface. The tar-
get was an entry straight out of PC Magazine’s The
Secret World of Embedded Computers, the thing no
active neighbor should be without—a handy-dandy
off the shelf CVS digital pregnancy test.

6.1 Fast, Cheap, and Easy

Head on down to your local pharmacy, and virtually
every store will carry a nifty brand of digital preg-
nancy tests. All of these tests are basically iden-
tical (inside and out), and the marketing strategy
is simple. Humans are bad at reading analog in-
puts, so when your time comes, let technology ease
your mind whether you, the user is stressed to the
breaking point trying to get pregnant or if you’re in
the boat of desperately hoping you’re sterile. “Oh
god, it’s been three seconds. Or minutes? Wait?

What happened to space time. Is there one blue
line? Two? I feel faint. Fish? Fuck! I’m pregnant
with mutant fish babies.”28

Now, it doesn’t matter which brand you buy for
this exercise—as far as I can tell, they’re all based
on the same two-chip solution built around a Holtek
HT48C06 microprocessor. And you can guess at the
function without cracking the case – just go buy one
(for extra bonus points, look as underaged as possi-
ble) and look at the test strips themselves.

Remember, this OTS technology is extra cool be-
cause back in the day, instead of peeing on a stick,
women suspected of pregnancy29 had to have their
urine injected into a rabbit in order to assess preg-
nancy before the onset of “the quickening.” If you
think it’s hard telling the difference between ‘+’
and ‘–’, you definitely haven’t had to divine your
future livelihood from the appearance of leporid en-
trails. And for extra bonus by the Theory Of Cyber-
Extension, every time you use a digital pregnancy
test, a cute bunny Tamagotchi is saved from certain
death.

6.2 Basics of the Test

Each strip has an absorbent area (that you pee on)
and a clear window where the test results show up.
One stripe is a control stripe that ‘fires’ (changes
color) in any liquid from water to bourbon, and the
other one is a test stripe that only fires when suffi-
cient concentrations of the hormone hCG are present

28The mutant fish baby thing is kind of true according to developmental biology, but that’s not really our focus today.
29Fun fact : Eve was the first hacker and Cain was her first 0-day. Humankind is the ultimate Trojan. Since Cain was such

a dick in the Biblical sense, the hacking community has carried his mark of social stigma until this very day.

32

in the fluid sample. (hCG stands for Human Chori-
onic Gonadotropin, named because scientists snicker
at words like “gonad.”) You can use the strips with-
out the digital tester, because all you’re being sold
is a device that will load in one of the basic strips,
and monitor the control and test stripes, and return
three results: ERROR, NOT or PREGNANT. It
turns out that $50 and getting at least one pregnant
woman to pee on a test strip can end up for an en-
tertaining couple of evenings at the old workbench.

Following these instructions, with enough time,
patience and abstinence, you’ll be able to make your
own legitimate-looking pregnancy test that works on
men and women alike! Or jazz it up to say “HI MOM”
in no time.

6.3 Teardown

To open the case of a digital pregnancy test (DPT),
take a nickel or quarter, place it in the detent in the
injection molded case, and gently twist. The model
of DPT I did most of my work with was the generic
“CVS Clear Results,” test – the mechanical specifics
may vary from brand to brand, but the nicest part of
the cheap injection-molded plastic is that the shell
parts are universally thin-walled and toleranced to
snap-fit together, which makes it easy to snap them
apart without visibly damaging the case.

Inside that case, there will be a circuit board
that has another multi-piece injection-molded as-
sembly of ABS plastic, press-fitted into mounting
holes on the PCB. This is the test strip alignment/e-
jection mechanism.30 For my purposes, I removed
this semi-destructively, by twisting off the retention
pins on the back side of the PCB. I wanted to save

the housing for when I rebuilt the test with my own
internal electronics, to be virtually indistinguish-
able from the stock pregnancy test but with added
entrepreneurial functions. This strategic re-use of
injection molded parts and hard-to-design mecha-
nisms adds that special professional flair to demon-
stration prototypes.

Once you’ve got the holder off, you’ll uncover
an activation switch and the analog optical sen-
sor (made of two photodiodes and three LEDs), a
PLL (used only for its voltage-controlled oscillator)
IC, the aforementioned Holtek HT48C06, a 3V bat-
tery and a custom LCD. You can either look up
the battery type to confirm it’s 3V, or just read
the CE-mark label on the outside of the DPT that
lists the part number, lot data, confirmation that
this test is made by SPD GmbH out of Geneva,
Switzerland (made in China), and that the test runs
on 3V DC. Safety first, kids. Also convenient: if
you peel up this label, you’ll see holes in a pat-
tern of the case that line up with un-tinned pads on
the PCB. These are the calibration and test points
for the Holtek, which means if you prefer firmware
reverse-engineering to hardware reverse-engineering,
you can go fiddle with the insides from the outside.

By the by, that label isn’t tamper-evident. You
can easily replace it. Don’t get any ideas!

6.4 Schematic

Flick the little button, and you’ll see the whole test
light up (with or without a strip). The LEDs strobe,
the LCD thoughtfully blinks its “thinking” icon, and
a scope or DMM will show plenty of pin activity
until the test errors out because you just set it off

30unzip pocorgtfo10 pregpatent.pdf

33

T1T2T3
T4

T5

T6
T7

T8

T9

T10

T11

T12

T13T14

T15

T16

T17

T18

T19

T20

T21

T22T23

T24

T25

T26

T27

T28

LCD1

LCD2

H9

H9
H9H9

R12-E

H9

R
12

-W

R12-W/R10-N

R10-N

R10-S

R10-S

R8 C2 R11 R2 R3 Q2 Q1
R1

R7

R6

SW1

D1D3 D2

D5 D4

R4R5

R10

R9

C1

C3

R12
U5

U1

J1

J2
J4

J3

J5

T6

T8

T9

D1
T12
T10

VCC

without a valid test strip. I could have started prob-
ing there, but I realized that an optical test requires
a dark environment, and I wanted to bring my test
wires out through the conveniently placed unit-test-
and-programming holes on the case. My ultimate
goal was to test the unit under multiple conditions
to determine the internal logic. That meant making
a schematic.

I don’t enjoy tracing out circuits with dark sol-
dermask, and the DPTs are relatively cheap, so I
gathered up the pinouts for each IC and then did
my physical net trace using graphic design tools.

Step 1. Desolder all components from the PCB.
Step 2: Scrub the pads with solder wick to get

them nice and flat.
Step 3. Using a razor blade or fine-grit sandpa-

per, sand off the soldermask with loving attention
on both sides of the PCB.

Step 4. Scan the PCB with high contrast.
Step 5. Import the scans into an illustration tool

of your choice. Color code the top vs. bottom scans
to match your preferred layout scheme. Drop circles
on the vias—first. Then add the IC and passive pins.

Then add your traces. Use the vias to register the
two images on top of one another for a single layout
trace.

Step 6. Annotate the trace with the reference
designators from an intact PCB. Add your own net
names and pin labels. Use this to build a reference
schematic.

6.5 Let’s Skip the Firmware

Let’s walk through what this sweet little circuit is
up to.

First off, the Holtek micro is always on, albeit
in sleep mode. The battery is sized for the shelf life
of the device plus a couple of uses (three strips ship
with each one). When a test strip is placed in the
tester, it mechanically triggers the switch which a)
flags an interrupt to the microcontroller to wake it
up out of sleep mode and b) enables power to the
PLL and sense circuitry that would not otherwise
be powered. If you remove the test strip mid-test,
it cuts power to the PLL and the micro will error
out, making it a bit of a pain to work with. Meh,

34

meh, power-saving feature and fault reporting dur-
ing foreseeable misuse.

Once all supplies are up, the Holtek samples the
state of the optical sensor four times a second for
twenty iterations, averaging the samples. In order
to sample the test strip, the Holtek drives the LEDs
and then reads back the output state of the photode-
tector, using the voltage-controlled-isolator (VCO)
sub-function of that phase-lock-loop IC. The role
of the VCO is to convert the analog voltage from
the photodetector into a square wave for easy edge
counting. Higher voltage implies a higher frequency
of edges. Because the micro controls the LED exci-
tation timing, it can easily tell by edge counts what
color test strip the LEDs might be illuminating. It’s
pretty nifty.

Because I wanted to build new electronics to
fit inside the case of the original DPT and repro-
duce a function similar to the original hardware and
firmware, I dove into the deeper specifics of how the
DPT detects whether one or two blue stripes show
up in that plastic clear-view window. The secret is
stereoscopic vision enabled by time-division multi-
plexing and the physical layout of the optosensor.
The three LEDs are interdigitated with two parallel
photodiodes that are the base current sources in a
PNP common emitter amplifier (D4, D5, Q2). The
Holtek enables each of the 3 LEDs (D1, D2, D3) se-
quentially using a 25% LOW duty cycle waveform
at 10kHz. The LEDs are strobed in a round-robin
fashion and the Holtek samples the result via the
VCO.

When any one of the three LEDs is strobing, the
induced current in the photodiode causes the filter
cap on the output of Q2 to charge. The LED’s light
causes charging, while discharging occurs while the
LED is off. Because the Holtek excites the LEDs
intermittently, the output of the photodetector is a
sawtooth wave. The period of the sawtooth is the
LED drive interval, while the peak and trough of
the sawtooth wave correspond to the colorimetric
intensity of the test stripe that appears and/or the
amount of mis-alignment between the photodetector
and the LED array.

But how does this produce stereoscopic vision,
you ask?

For the same background test strip, when D1 is
on, the sawtooth peak-to-peak amplitude will be dif-
ferent than when D3 is on, giving the sensor some
ability to resolve spatial light sources. Because the
LEDs are independently addressable, it also means

that the Holtek can discriminate between a colored
stripe hanging over D5 (stripe #1) versus one hang-
ing over D4 (stripe #2). Also, all apologies for
the fact that the reference designator order for the
diodes makes no physical sense. It’s not how I’d de-
sign the board, but it apparently took eight revisions
for the manufacturer to get this far.

6.6 Schrödinger’s Rabbit

Okay, so if you’re pregnant, it works like this.

Just kidding, folks—here’s what the DPT is doing.
Photodetectors Test Stripe
D3 D1 D2 ST1 ST2

PREGO L H L CNTRL PREGO
CNTRL L H H CNTRL . . .
ERROR H H L . . . PREGO
BLANK H H H
Remember that a high PD voltage implies more

edges counted by the Holtek per excitation cycle.
The Holtek uses this and sequencing to tell if you’re
pregnant. Based on the chemistry of the test stripe,
the test expects the CNTRL stripe to fire first.
If only the CNTRL stripe fires—congratulations,
you aren’t pregnant! Again, due to chemistry, the
PREGO stripe ought to always fire second, if at all.
If the stripes fire out of order, that’s an error. If the
PREGO stripe fires but the CNTRL stripe doesn’t,
that’s an error. If no stripe fires, that’s an error.

The factors that contribute to setting the DE-
TECT vs. NO-DETECT threshold for “how many
edges do I expect to count if the rabbit died” are
(1) the distance from each of the three LEDs to each
of the two sensors, (2) the intensity of the LEDs,
(3) the color of the LEDs (as that corresponds to
the sensitivity of the sensors for a given wavelength
of light), (4) the placement of the stripes (if they
appear) with respect to the two photodiodes, and
(5) the color of the stripe and the saturation of the
stripe. Because process controls on LEDs are fuck-
ing horrible, each test has to be individually cali-
brated after assembly.

But that’s good news for us!

35

6.7 Hands-On Hacking

Let’s be honest, you don’t want to come up with
a new set of guts to shove into the case of a digi-
tal pregnancy test relabeled 0xBEEF and 0xCAFE for
maximum entertainment and confusion to potential
investors! You just want to have fun with the avail-
able raw materials that God and your local drug-
store have provided.

Each element of the LCD for the digital preg-
nancy test is custom, just like an old Tamagotchi.
That means one pin polarizes the layer with the
test logo artwork on it. A second layer covers “SEE
LEAFLET” for reporting error states, a third conveys
“NOT” and a fourth, “PREGNANT.” A given layer is ac-
tive when the phase of the drive pin is 180 degrees
out of phase with the COMMON pin.

So, let’s go through the pins that make this hap-
pen.

LCD Pin Image
1 Common
2 “NOT”
3 “PREGNANT”
4 “SEE LEAFLET”
5 Logo

Pregnant Not

See leaflet

Pin 1 is the rightmost pin if you’re looking at the
LCD face and the pins are at the top of the pack-
age, opposite the reference designator. Make sure
to not just short pins—you actually have to lift and
move any pins you might be interested in swapping
around. Cut a wire here, tack in a jumper there.
Mix and match, and get ready to have a ball! Dance
a jig! I mean, shoot, a fella could have a pretty good
weekend in Vegas with all that.

At the time I was doing this work, the Holtek
micro wasn’t available for purchase from Digikey or
Mouser, so in a fit of intellectual incuriosity, I didn’t

bother to crack it. Outcome: I can’t give you any
information on its internals other than what I’ve in-
ferred from reverse-engineering the rest of the cir-
cuit. I’d love to see it done, though—just because
the programming physical interface is obfuscated in
the primary datasheet doesn’t mean it’s impossible.
If I were doing this twice, I’d start with the ICE.
The correct ICE tool for the job, assuming you’re
into that, is the CICE48U000006A. In the interest
of speed, I based my redesign on a PIC16F1933 and
a character LCD that fit nicely in the same window
as the original.

The demo worked, but I never got paid. So,
demo code and hardware design files are available
for any neighbor who wants to buy me a beer.
Cheers!
–w0z

36

37

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex).
The format of each track is disk-specific. Most disks split each track
into 16 “sectors,” but older disks use 13 sectors per track. Some
games use 12, 11, or 10. Newer games can squeeze up to 18
sectors in a single track! Just figuring out how data is stored on disk
can be a challenge.

Disk Layout

4am

Apples have a built-in “monitor” and naive disassembler.
Confusing this disassembler is not hard!

to deprotect
and preserve

Disk Boot
A disk is booted in stages, starting from ROM:
$C600 ROM finds track 0 and reads sector 0 into $800
$0801 RAM re-uses part of $C600 code to read more sectors
 (usually into $B600+)
$B700 RAM uses RWTS at $B800+ to read rest of disk

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

Prologue And Epilogue
Many protected disks start with DOS 3.3 and change prologue/
epilogue values. Here's where to look:

 0x read write

 D5 $B955 $BC7A
 prologue AA $B95F $BC7F
 / 96 $B96A $BC84
ADDRESS
 \ DE $B991 $BCAE
 epilogue AA $B99B $BCB3
 EB ----- $BCB8

 0x read write

 D5 $B8E7 $B853
 prologue AA $B8F1 $B858
 / AD $B8FC $B85D
DATA
 \ DE $B935 $B89E
 epilogue AA $B93F $B8A3
 EB ----- $B8A8

Every pirate needs:
-

-

-

-

Know Your Tools
a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy II Plus, Nibbles Away, Locksmith)
a SECTOR EDITOR for searching, disassembling, patching
sector-based disks (Disk Fixer, Block Warden, Copy II Plus)
a DEMUFFIN TOOL for converting disks to a standard format
(Advanced Demuffin, Super Demuffin)
a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher)

Common Code Obfuscation

Self-modifying code
BB03- 4E 06 BB LSR $BB06 <-- modifies the next instruction
BB06- 71 6E ADC ($6E),Y
BB08- 0A ASL
BB09- BB ???

By the time $BB06 is executed...

BB03- 4E 06 BB LSR $BB06
BB06- 38 SEC <-- the code has changed!
BB07- 6E 0A BB ROR $BB0A

Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
AEB7- 8C EC B7 STY $B7EC
AEBA- 88 DEY
AEBB- 8C F4 B7 STY $B7F4
AEBE- 88 DEY
AEBF- F0 01 BEQ $AEC2 <-- Y = 0 here, so this branches...
AEC1- 6C 8C F0 JMP ($F08C)
AEC4- B7 ???
AEC5- 8C EB B7 STY $B7EB

AEBF- F0 01 BEQ $AEC2
AEC1- 6C
AEC2- 8C F0 B7 STY $B7F0 <-- ...to here (JMP is never executed)
AEC5- 8C EB B7 STY $B7EB

Manual stack manipulation
0800- A9 51 LDA #$0F <-- push address to stack ($0FFF)
0802- 48 PHA
0803- A9 8E LDA #$FF
0805- 48 PHA
0806- 20 5D 6A JSR $080C <-- call subroutine (also pushes to stack)
0809- 4C 00 08 JMP $0800
080C- 68 PLA <-- remove address pushed by JSR
080D- 68 PLA
080E- 60 RTS <-- "return" to $0FFF+1 = $1000

JMP at $0809 is never executed! Execution continues at $1000.

Undocumented opcodes
0801- 74 ??? <-- huh?
0802- 4C B0 1C JMP $1CB0

$74 is an undocumented 6502 opcode that does nothing, but takes a
one-byte operand. Here is what actually executes:

0801- 74 4C DOP $4C,X
0803- B0 1C BCS $0821 <-- actually a branch-on-carry (not a JMP)

JMP at $0802 is never executed!

Disk Control
Disk control is through “soft-switches,” not function calls:
$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3)
$C088,X turn off drive motor
$C089,X turn on drive motor
$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)
(X = boot slot x $10)

CC BY 4.0 - Ange Albertini 2015with apologies to Beagle Bros.

Peeks,Pokes and Pirates

38

7 A Brief Description of Some Popular Copy-Protection Techniques
on the Apple][Platform

by Peter Ferrie (qkumba, san inc)

§ page
7.9 Write-protection 44
7.10 Sector-level protections 44
7.11 Track-level protections 58
7.12 Illegal opcodes 62
7.13 CPU bugs 62
7.14 Magic stack values 63
7.15 Obfuscation 63
7.16 Virtual machines 67
7.17 ROM regions 68
7.18 Sensitive memory locations 68
7.19 Catalog tricks 71
7.20 Basic tricks 72
7.21 Rastan 73

7.1 Ancient history

I’ve been. . . let’s call it “preserving” software since
about 1983, albeit under a different name. However,
the most interesting efforts have been recent, requir-
ing skills that I definitely didn’t have until now: I
am the author of the only two-side 16-sector con-
version of Prince of Persia31, the six-side 16-sector
conversion of The Toy Shop32, the single file con-
version of Joust, Moon Patrol, and Mr. Do!, as
well as the DOS and ProDOS file-based conversions
of Aquatron, Conan33, The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending
from side B), Mr. Do!, Plasmania, and Swashbuck-
ler, to name a few. I am also the only one to crack
Rastan cleanly on the IIGS, just 25 years late.34
Yes, I do 16-bit, too.

I’ve spent 13 years writing articles for the Virus
Bulletin35 journal. My faithful readers will recog-
nise the style.

7.2 Isn’t it ironic

4am36 declined to write this document himself, but
his work and approval inspired me to do it instead.
Since his collection is so varied, and his write-ups
so detailed, they served as a rich source of informa-
tion, which I coupled with my own analyses, to fill
in the gaps for titles that I don’t have. Everyone
knows already that he’s funny, but he’s also quite
friendly and very generous. Together, we corrected
a few mistakes in the write-ups, so I gave something
back. I even consider us friends now, so I think that
I got the better deal.

While I don’t regret writing this paper, I do have
to say that, considering the time and effort that it
required, he probably made a wise decision. . . ;-)

I have tried to associate at least one example of a
real program for each technique, but in Section 7.20
you’ll find some nifty new protection techniques that
I’ve developed just for this paper.

7.3 Why why why?

Why the Apple][? It’s because I grew up with the
Apple][, I learned to code on the Apple][, I know
the Apple][.

Why now? Because the disks that were fresh
when the Apple][was current are failing, and if we
do not work to preserve them now, some of the titles
will be lost forever.

This paper is dedicated to anyone who has an in-
terest in helping to preserve what’s left, I sincerely
hope it may help to recognise and defeat the copy-
protection that they have come across.

7.4 Okay, let’s split

We can separate copy protection into two categories;
they are either What You Have or What You Know.
What You Have protections are generally protected
disks, while What You Know protections are gener-

31http://pferrie.host22.com/misc/lowlevel14.htm
32http://pferrie.host22.com/misc/lowlevel15.htm
33http://pferrie.host22.com/misc/lowlevel16.htm
34http://www.hackzapple.com/phpBB2/viewtopic.php?t=952
35http://www.virusbtn.com
36https://archive.org/details/apple_ii_library_4am

39

ally off-disk, such as requests to type in a word from
the manual.

What You Know protections come in several
forms. One is an explicit challenge with immedi-
ate effect; you must answer now to continue. An-
other is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes un-
playable later. Yet another is an implicit challenge;
in order to proceed, you should perform an action as
described in the manual, but the game will appear
to be playable without it.

Infocom were infamous for their use of all three:

Starcross issued a direct challenge with immedi-
ate effect, and you could not even leave the second
room without typing the correct co-ordinates from
the star chart.37

Spellbreaker38 issued a direct challenge with de-
layed effect, along the lines of “name the wizard
who. . . ” Any name from their word list is accepted,
but an incorrect answer results in the player receiv-
ing the wrong key. This key cannot unlock a critical
door much later in the game, causing the character
to be killed instead.

Border Zone made use of an implicit challenge.
It required reading the manual in order to know the
correct words to excuse yourself — Oopzi Dazi!39—
after bumping into someone, in order to establish
contact with the friendly spy. Failure to make con-
tact within the allotted time ended the game.

Brøderbund’s Prince of Persia had a variety of
delayed effects, depending on which of the several
copy protection checks failed. One of them included
crashing immediately before showing the closing
scene upon winning the game. That is, after com-
pleting fourteen levels!

However, the What You Have is perhaps the
more interesting, given the vast number of possi-
bilities.

7.5 Accept your limitations

The first important component that we will con-
sider in the Apple][is the MOS 6502 or 65C02
CPU. These CPUs have no separation of code and
data. That is, they are a Von Neumann, not Har-
vard architecture. All memory and I/O addresses
are executable, and everything that is not in ROM
is writable, including the stack.

Since the stack is writable directly, it introduces
the possibility of tricks relating to transfer of con-
trol. (§7.14.) Since the stack is executable, it intro-
duces the possibility of hosting code. (§7.18.5.)

The CPU has no prefetch queue, only a sin-
gle prefetched byte of the next instruction (which
is why the minimum instruction execution time is
two cycles—one for the instruction, and one for the
prefetch), as the last stage in the execution of the
current instruction. This introduces the possibility
of self-modifying code, including the next instruc-
tion to execute, because any memory write will have
completed before the prefetch occurs. (§7.15.2.)

7.6 Lay it out for me

The second important component that we will con-
sider in the Apple][is the Disk][controller. The
Disk][controller is a peripheral which is placed in
a slot. It exposes an interface through memory-
mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface
looks like accesses to $C0sX, where s is #$80 plus
the slot times 16, and X is the switch to access.

The Disk][controller runs independently of the
CPU. Once the drive is turned on and spinning the
disk, the drive will continue to spin the disk until the
drive is turned off again. The drive rotates the disk
at a fixed speed—approximately 300 RPM, and five
rotations per second, which works out to be 200ms
per rotation. However, the speed varies somewhat
from drive to drive. For 5.25" disks, the data den-
sity is equal across all tracks. At 300 RPM, each

37http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
38http://gallery.guetech.org/spellbreaker/spellbreaker.html
39http://infodoc.plover.net/manuals/temp/borderzo.pdf p19

40

track holds 50000 bits, which is equal to 6250 8-bit
nibbles.

The data on a disk is simply a stream of bits
to be read. For a 5.25" disk, those bits are usually
gathered into 16 sectors of 256 bytes each, spread
across 35 tracks—256× 16× 35 = 143, 360 bytes, or
140kb. When reading from a disk, the Disk][con-
troller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen.
Thus, a full nibble takes the equivalent of 32 CPU
cycles to shift in. After the full nibble is shifted in,
the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cy-
cles, to allow it to be fetched reliably. After those
four CPU cycles elapse, and once a one-bit is seen,
the QA switch of the Data Register will be zeroed,
and then the controller will begin to shift in more
bits. As a result, programmers must count CPU cy-
cles carefully to avoid missing nibbles fetched by the
controller.

The Disk][controller cannot tell you on which
track the head resides. It also cannot tell you on
which sector the head resides. (The Shugart SA400
on which the Disk][controller is based does have
this capability via index detector circuits, but that
feature was removed from the Disk][controller to
reduce the cost to manufacture it.) As a result, sec-
tors are usually prepended with a structure known
as the “address field”, which holds the sector’s track
and sector number. The controller does not need or
use this information. Only the boot PROM makes
use of it when requested to read a sector. Beyond
that, the information exists solely for the purpose of
the program which interprets it.

gap 2
(14-24b)

address field gap 3
(5-10b)

data field

D5 AA 96
 volume
 track
 sector
 checksum
DE AA

D5 AA AD
 data (342b)
 checksum
DE AA

gap 1
(40-95b)

... ...

disk data

Following the address field that defines a sec-
tor’s location on the disk, there is another structure
known as the “data field”, which holds the sector
body. One reason for the separate address and data
fields is to allow the sector body to be skipped, as

opposed to stored and then decoded, in the event
that the sector address is not the desired one. An-
other reason is that it allows a sector to be updated
in-place, by overwriting the data field only, instead
of rewriting the entire track to update all of the sec-
tors.

(If the sector were a single structure, the CPU
time required to verify that the desired sector has
been found is so long that the write would begin af-
ter the start of the sector body and extend beyond
the original end of the sector, overwriting part of
the following sector.)

Between the sectors are dead space, which can
be filled with a sequence of self-synchronizing val-
ues, timing bits, and protection-specific bytes.

The two structures that define a sector are each
bounded by a prologue and an epilogue. The pro-
logues for the address and data fields are composed
of three values. Two of those values are never used
in the sector body, to distinguish the structures from
the sector body, and the third value is different be-
tween the two structures, to distinguish them from
each other. The epilogues for the address and data
fields are composed of two values. One of those val-
ues is common to both epilogues but never used in
the sector body, to distinguish it from the sector
data.

The Disk][controller cannot even tell you where
it is within the bitstream. The problem is that
the stream does not have an explicit start and end.
Instead, a specific sequence must be laid on the
track, to form an implicit start. That way, the
hardware can find the start of the stream reliably.
These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector for-
mat, the self-synchronising values are composed of
a minimum of five ten-bit “FF”s. A ten-bit “FF” is
eight bits of one followed by two bits of zero. Self-
synchronising values are usually placed before both
structures that define a sector, to allow synchroni-
sation to occur at any point on the disk. However,
this is not a requirement if read-performance is not
a consideration.40 That is, the fewer the number of
self-synchronizing values that are present, the more
data that can be placed on a track. However, the
fewer the number of self-synchronizing values that
are present, the more the controller must read be-
fore it can enter a synchronized state, and then start

40It is a requirement if the data field can be written independently of its address field. Since the write is not guaranteed to
begin on a byte boundary, the self-synchronizing values are required for the controller to synchronize itself when reading the
data again.

41

to return meaningful data.
Finally, the Disk][controller can write—but not

read reliably—arbitrary eight-bit values. Instead, for
reading each eight-bit value, only seven of the bits
can be used—the top bit must always be set, in order
for the hardware to know when all eight bits have
been read, without the overhead of having to count
them. (See §7.10.15 for a deeper discussion about an
effect made possible by the lack of a counter.) In ad-
dition to requiring the top bit to be set, there should
not be more than two consecutive zero-bits in a row
for the modern drive. (The original disk system did
not allow even that. See §7.10.13 for a deeper dis-
cussion about the effect of excessive zeroes)

AND
ORA
EOR

ADC
SBC

DEC INC
DEX INX
DEY INY

ASL LSR
ROL ROR

TAX TXA
TAY TYA
TSX TXS

LDA
LDX
LDY

STA
STX
STY

PLA PLP

PHA PHP

JSR BRK
RTS RTI
JMP

BMI BPL
BVS BVC
BEQ BNE
BCS BCC

CLV
SEC CLC
SED CLD
SEI CLI

CMP
CPX
CPY

BIT

ALU

flags

lo
gi

c
lo

gi
c

ar
ith

m
et

ic

RMWRMWRMW
loadload

transfertransfer

storestore

ct
rl

flo
w

stackstack

NOP

7.7 Copy me, I want to travel

Now that we understand the format of data on the
disk, we consider the ways in which that data can
be copied.

First is the sector-copier. It relies on sectors be-
ing well-defined, and requires knowing only the val-
ues for the prologues and epilogues. The sectors are
copied one at a time in sequential order, for each of
the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing val-
ues instead. Some sector-copiers rely on DOS to
perform the writing. In order for that to work, the
disk must be formatted first, because that kind of

sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place
a sector on a track. In any case, the sector-copier
cannot deal easily with deviations from the standard
format, and requires a lot of interaction to copy sec-
tors for which the prologue and/or epilogue values
are not constant. Some sector-copiers can be di-
rected to ignore the sectors that they cannot read,
but obviously this can lead to important data being
missed.

Second is the track-copier. It also relies on sec-
tors being well-defined, with known the values for
the prologues and epilogues. However, it reads the
sectors in the order in which they arrive, and then
writes the entire track in one pass41, by itself. It
shares the same limitations as the sector-copier re-
garding reading sectors and discarding the data be-
tween them, but it keeps the sectors in the same
order as they were originally, which can be impor-
tant. (§7.10.9.)

Third is the bit-copier. Unlike the previous two,
it makes as few assumptions as possible about the
data on the disk. Instead, it treats tracks as the
bitstream that they are, and attempts to measure
the length of the track while reading.42 It intends
to write the track exactly as it appears on the disk,
including the data between the sectors, in one pass.
Some bit-copiers can be directed to copy the addi-
tional zero-bits in the stream, but there is a limit
to how reliably these bits can be detected, and the
method to detect them can be exploited. Some bit-
copiers can be directed to attempt to reproduce the
layout of the disk across track boundaries. See sec-
tions 7.10.12 and 7.11.3.

The most important point about copiers in gen-
eral is that there is simply no way to read data off of
a disk with 100% accuracy, unless you can capture
the complete bitstream on the disk itself, which can
be done only with specialised hardware. There is no
way for software alone to read all of the bits explic-
itly and understand how the controller will behave
while parsing them

41As opposed to reading the sectors in sequential order, and then writing the entire track—that would only make it a sector-
copier with a faster write routine.

42A sector-copier can use the collection of sectors as a basic track length; the bit-copier has no such luxury. Instead, it is left
to “guess”, and might be forced to discard or insert additional data to reconstruct a track of the same length. The difference
occurs when the rotation speed of the drive that is being used to make the copy is not the same as that of the drive that was
used to make the original.

42

7.8 Super-super decoder ring

Despite the quite strict requirements regarding the
format of data on the disk, DOS introduced two ad-
ditional requirements regarding the format of data
within a sector. The first requirement is that there
must not be more than one pair of zero-bits in the
value. The second requirement is that there be at
least one pair of consecutive one-bits, excluding the
sign bit.

If we ignore the DOS requirements for the mo-
ment, and consider instead all possible values which
comply with the hardware requirement to have no
more than two consecutive zero-bits, then there are
81 legal values.

10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)
10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)
10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)
10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)
10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)
10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (F7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)
10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)
10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)
10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)
10101010 (AA) 11001011 (CB) 11100111 (E7)
10101011 (AB) 11001100 (CC) 11101001 (E9)
10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements
that there not be more than one pair of zero-bits,
then there are only 72 compliant values, as we see
here:
10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)
10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)
10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)
10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)
10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)
10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)
10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)
10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

If we introduce the second of the DOS require-
ments that there be at least one pair of consecutive
one-bits, excluding the sign bit, then there are only
64 compliant values:

10010110 (96) 10110100 (B4) 11010110 (D6) 11101101 (ED)
10010111 (97) 10110101 (B5) 11010111 (D7) 11101110 (EE)
10011010 (9A) 10110110 (B6) 11011001 (D9) 11101111 (EF)
10011011 (9B) 10110111 (B7) 11011010 (DA) 11110010 (F2)
10011101 (9D) 10111001 (B9) 11011011 (DB) 11110011 (F3)
10011110 (9E) 10111010 (BA) 11011100 (DC) 11110100 (F4)
10011111 (9F) 10111011 (BB) 11011101 (DD) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011110 (DE) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011111 (DF) 11110111 (F7)
10101011 (AB) 10111110 (BE) 11100101 (E5) 11111001 (F9)
10101100 (AC) 10111111 (BF) 11100110 (E6) 11111010 (FA)
10101101 (AD) 11001011 (CB) 11100111 (E7) 11111011 (FB)
10101110 (AE) 11001101 (CD) 11101001 (E9) 11111100 (FC)
10101111 (AF) 11001110 (CE) 11101010 (EA) 11111101 (FD)
10110010 (B2) 11001111 (CF) 11101011 (EB) 11111110 (FE)
10110011 (B3) 11010011 (D3) 11101100 (EC) 11111111 (FF)

That leaves us with eight values for which there
is not more than one pair of zero-bits, but also not
one pair of consecutive one-bits, excluding the sign
bit. DOS reserves some of these value for a separate
purpose.
10010101 (95)
11010010 (D2)
11010100 (D4)
11010101 (D5)
10100101 (A5)
10101001 (A9)
10101010 (AA)
11001010 (CA)

That leaves us with 17 values for which there
are not more than two consecutive zero-bits, which
seems like a missed opportunity for a better encod-
ing:
10010010 (92) 10101001 (A9) 11100100 (E4)
10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)
10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)
10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)
10100101 (A5) 11010101 (D5)

Having exactly 64 entries in the table allows us
to represent all of the values using six bits. That
leads us to an encoding method known as “6-and-2
Group Code Recording (GCR)” or more commonly
“6-and-2” encoding.

In “6-and-2” encoding, an eight-bit value is split
into two parts, where the high six bits are separated
from the low two bits. (The disk system for which
DOS 3.2 was first written had an additional restric-
tion that did not allow consecutive zero-bits, and
so used “5-and-3” encoding for the same purpose.)
To encode an entire sector, each of the two-bit val-
ues are gathered together, such that three of them
form another six-bit value in reverse order, and are
stored first, followed by each of the regular six-bit
values. Prior to storing any of the values, they must
be transformed into the values in our table of 64
nibbles. This is done by using the original value as
an index into the nibble table, and writing the value
from the table instead.

43

When we place the original value beside the nib-
ble value, the table looks like this:
00 = 96 10 = B4 20 = D6 30 = ED
01 = 97 11 = B5 21 = D7 31 = EE
02 = 9A 12 = B6 22 = D9 32 = EF
03 = 9B 13 = B7 23 = DA 33 = F2
04 = 9D 14 = B9 24 = DB 34 = F3
05 = 9E 15 = BA 25 = DC 35 = F4
06 = 9F 16 = BB 26 = DD 36 = F5
07 = A6 17 = BC 27 = DE 37 = F6
08 = A7 18 = BD 28 = DF 38 = F7
09 = AB 19 = BE 29 = E5 39 = F9
0A = AC 1A = BF 2A = E6 3A = FA
0B = AD 1B = CB 2B = E7 3B = FB
0C = AE 1C = CD 2C = E9 3C = FC
0D = AF 1D = CE 2D = EA 3D = FD
0E = B2 1E = CF 2E = EB 3E = FE
0F = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table—
#$AA and #$D5—for the prologue signatures. These
values are good candidates for the purpose of iden-
tifying the headers, because they do not conform to
the “at least one pair of consecutive one-bits” cri-
terion, and thus do not conflict with the entries in
the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 with-
out the sign bit. By reserving these values, it en-
sures that the bitstream generated by arbitrary sec-
tor data cannot contain a long string of ones (pre-
vented by reserving #$FF), or alternating zeroes and
ones (prevented by reserving #$AA and #$D5), re-
gardless of the user’s data.

The third value of the prologue signature (#$96
or #$AD) need be unique only between the headers,
in order to distinguish between the two. The combi-
nation of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table—
#$AA—for the second byte of the epilogue signatures,
for the same reason as for the prologue. The first
byte of the epilogue signature need not be unique
with respect to sector data (because the combina-
tion of unique values and non-unique values still pro-
duces a unique sequence), but obviously it must not
match the first byte of the prologue, because the
third byte of the epilogue (intended to be #$EB) is
written sometimes with only limited success (and it
is never verified for this reason), and so could poten-
tially be read as the third byte of a prologue instead,
with unpredictable results.

The decoding process requires a reverse transfor-
mation, via a table which is typically filled with all
of the values in a six-bit number. (See the sections
on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk
are used as an index into the table, in order to re-
cover the original six-bit value. So the table has
gaps between some of the values, because the legal
values of the nibbles are not consecutive.

Note that convention is a powerful force. There
is no reason for the table to have the nibbilisation
entries in that order, or to exclude #$AA or #$D5 (or
any of the other 15 entries from the last table) from
the set. Further, according to John Brooks, it is pos-
sible to use all 81 values from our first table, com-
bined with a special encoding method, which would
increase the data density by 105.5%, and potentially
even more.43

7.9 Write-protection
The absolute simplest possible protection against a
copy is to check if the disk is write-protected. The
vast majority of owners of duplicated software won’t
bother to write-protect the disk. If the disk is not
write-protected, then the image is considered to be
a copy, rather than the original.

Alien Addition uses this technique.

1 ; assumes s l o t 6
7975 LDA $C0ED ; reque s t s t a tu s

3 7978 LDA $C0EE ; read s t a tu s
797B BPL $7985 ; taken i f write−

enabled

A more generic version of the technique is
slightly longer:

0000 LDX $2B ; f e t ch s l o t (x16)
2 0002 LDA $C08D , X ; r eque s t s t a tu s

0005 LDA $C08E , X ; read s t a tu s
4 0008 BPL $0008 ; hang i f write−

enabled

7.10 Sector-level protections
7.10.1 Altered prologue/epilogue

This is one of the simpler techniques available, and
was used by many titles. Standard DOS 3.3 uses

43http://www.bigmessowires.com/2015/08/27/apple-ii-copy-protection/#comment-227325

44

the sequence #$D5 #$AA #$96 to identify the ad-
dress field prologue, #$D5 #$AA #$AD to identify the
data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose
from the 17 values from our fifth table, for either the
first two bytes of the prologue values, or the second
byte of the epilogue. It is also possible to choose
from among the 81 values from our first table, for
either the third byte of the prologue, or the first byte
of the epilogue.

Most commonly, only one value is changed in the
prologue or epilogue, and that same value is used for
every sector on every track of the disk.

Lucifer’s Realm uses this technique; the epilogue
was changed from #$DE #$AA to #$DF #$AA.

The Tracer Sanction extended the technique by
carrying a table of values, and using a different value
for each track.

Masquerade extended the technique to the sec-
tor level, by requiring that each even sector has one
value, and each odd sector has another value. The
routine extracts bit zero of the sector number, and
then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5
(the standard value), and odd sectors use #$D4. This
is necessary because sector zero of track zero must
have the regular value in order to be readable by the
boot PROM.

The Coveted Mirror used exactly the same
technique–and almost the exact same code–at only
the track level.

Due to size limitations, the boot PROM does
not verify the epilogue bytes44 allowing all sectors
on all tracks—including the boot sector itself—to be
protected. The most common technique involved al-
tering the epilogue values to something other than
the default value. This protection cannot be repro-
duced by a sector-copier or track-copier, which re-
quires the default values to be seen, because they
will fail to copy the sector. Operation Apocalypse
uses this technique.

Given that the boot PROM does not verify the
epilogue bytes, a very light protection technique is
to change the epilogue values to something other
than the default values for sector zero of track zero
only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which requires the default values to be
seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use

of this technique.
A common technique to defeat this protection is

to ignore read errors for all sectors, in the hope that
it is caused by the non-default epilogue values alone.
However, given the degrading state of floppy disks
these days, ignoring read errors can hide the fact
that the disk is truly failing.

The address field contains more than just the
track and sector numbers. It also contains a vol-
ume number. This value can be used as a quick
method to determine which disk from a set is cur-
rently inserted into the drive. However, support for
it—even in DOS—is poor. So many programs, in-
cluding DOS itself, assume that the volume number
is the default value. When it is changed, the read
fails. By hard-coding the new value in DOS, the
disk will be readable only by itself. Algebra Arcade
uses this technique.

This technique can also be used in a slightly dif-
ferent way. Since each sector can have its own vol-
ume number, any value can be put there, as long as
the program is aware of that fact.

Randamn sets the volume number to a check-
sum calculated from the current track and sector,
and hangs if the values do not match.

Both the address field and data field contain
a checksum of the data that precede it, prior to
the epilogue. The checksum algorithm is usually
a rolling exclusive-OR of each of the bytes, with a
zero seed. However, there is no requirement that
either of these things is used, for sectors other than
sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a
cumulative ADD or anything else at all. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which relies on the regular algorithm,
because the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this
technique. It maintains a counter at address $40,
which coincides with the track number which is
stored by the boot PROM. In order to break out
of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with
an intentionally bad checksum. This causes the boot
PROM to rewrite the value at address $40. The
new value is exactly what the program requires as
the exit condition. This protection cannot be re-
produced by a sector-copier or track-copier, because
they will fail to copy this sector, resulting in a disk
that has only sectors with good checksums. The disk

44It also ignores the address field checksum and volume number.

45

will not boot because it will never exit the loop.
The volume number is normally an eight-bit

value. For efficiency of encoding it, DOS uses a “4-
and-4” encoding, where the four odd bits are sepa-
rated from the low even bits, and converted to nib-
bles. To recombine them, it is a simple matter to
shift the nibble holding the odd bits (“abcd”) one
to the left, resulting in an encoding that looks like
“a1b1c1d1”, and then to AND the result with the nib-
ble holding the even bits (“efgh”), whose encoding
that looks like “1e1f1g1h”. This method requires 16
bytes to describe the address field. Since the track,
sector, and checksum, are known to fit into six bits
each, it is easy to see that if the volume number is
disregarded, a “6-and-0” encoding can be used in-
stead. This method requires only four nibbles to
describe the address field. Algernon uses this tech-
nique.

The entries in the address field have a defined
order because the boot PROM needs to read them
to identify sector zero of track zero, and any other
sector which the PROM is asked to read. However,
it is possible to change the order of the entries for
other sectors on the disk, and then to read the sec-
tors manually.

7.10.2 Fewer sectors

The major reason for using 16 sectors per track is
because that is the maximum number that can fit
within the standard format created by DOS 3.3.
DOS 3.2 supported only 13 sectors per track, be-
cause of the limitation of the hardware regarding
consecutive zeroes. Copy protection techniques are
free to use fewer sectors than either of those values.

Wavy Navy uses ten sectors per track, while
Olympic Decathlon uses eleven and Karateka uses
a dozen. The sectors in these examples are all the
regular size, but encoded in a wasteful manner. (Pri-
marily the “4-and-4” encoding was used because the
decoder is very small, but sometimes “5-and-3” be-
cause the decoder looks weird when compared with
the more familiar “6-and-2” encoding.) The wasteful
encoding is the reason for the reduced sector count;
there really isn’t more room for more sectors.

7.10.3 More sectors

The standard DOS 3.3 format disk uses 16 individ-
ual sectors per track, with relatively large gaps be-
tween the sectors. Consider how much space would
be available if those sectors were combined into a
single large sector, with a single field that combines
both address (specifically, only the track number)
and data fields. Yes, it would require reading the
entire track in order to find the field again once the
track had been verified, but for some applications,
performance is not that critical. This is what Info-
com did, on programs such as A Mind Forever Voy-
aging. Once the track had been found, and the data
field found again, then the program read (and dis-
carded) sectors sequentially until the required one
was found. Again, if the performance is not that
critical, the fact that the routine can fetch only one
sector at a time is not an issue. In fact, the imple-
mentation works well enough for the text-adventure
scenario in which it was used. Since the user will
be reading the text while additional text is loading,
the time required for that loading goes mostly un-
noticed.

Consider how much space would be available if
those gaps were reduced to the minimum of five self-
synchronizing values before the address field pro-
logue, with just a few bytes of gap between the
address and data headers. Then reducing the pro-
logue byte count from three to two, and the epilogue
byte count from two to one. Consider how much
space would be available by merging groups of sec-
tors. If you converted the track into six sectors of
three times the size, you would have RWTS18. This
is a good compromise between speed and density.
On one side, having fewer sectors means less pro-
cessing; and on the other side, having more sectors
means less latency to find a sector. The RWTS18
routine also supports “read scattering” by assign-
ing a dummy write address to the pages that aren’t
needed.

This second technique was used very heavily by
Brøderbund, on programs such as Airheart (and
even three years later, on Prince of Persia), but other
companies made use of it, too, such as Infogrames
in Hold-Up. Interestingly, in the case of Airheart,
after compressing the title screen to reduce its size

46

on the disk, the rest of the game fit on a regular
16-sector disk.

7.10.4 Big sectors

There is no requirement to define multiple sectors
per track. It is possible to define a single sector that
spans the entire track.45 However, there can be a
significant time penalty while reading such a track,
because it requires up to one complete rotation in
order to find the start of the sector.

Lady Tut uses a single sector per track, at a size
equivalent to eleven 256-bytes sectors.

7.10.5 Encoded sectors

As noted previously, there is no reason for a disk
to use our sixth table—there is no reason to have
the nibbilisation entries in that order, nor even to
use those values at all. Any alteration to the ta-
ble results in a disk that can be copied freely, but
whose contents cannot be read from the outside.
Further, the DOS on such a disk cannot write files
from the inside to the outside. The reason why the
read would fail is because the standard table would
be applied to data that requires the alternative ta-
ble to decode, resulting in the wrong decoding. The
reason why the write would fail is because the alter-
native table would be applied to data that requires
the standard table to encode, resulting in the wrong
encoding.

Maze Craze Construction Set uses an alternative
nibble table—all of the values from #$A9-FF from
our first table. These values might have been cho-
sen because they provide the least sparse array when
used as indexes.

Bop’N Wrestle uses the regular nibble table (and
a standard DOS 3.3), but in reverse order.

7.10.6 Duplicated sectors

The address field carries the sector number, but the
controller does not need or use this information, ex-
cept when the boot PROM is requested to read a
sector. Therefore, it is possible to have multiple
sectors with the same number.46 There are numer-
ous ways in which they could be distinguished, such

as by the volume number. A protection technique
could set every sector number to the same value in
the address field. It could set them all to zero, pro-
vided that the checksum algorithm is changed, so
that the boot PROM will read successfully only the
true sector zero, in order to boot the disk. It could
also use the volume number from the address field as
the page number in which to write the sector data.
This would be a very compact way to load data with-
out the need to pass the address as a parameter to
the loader.

Math Blaster has two sectors numbered zero
on track zero. The program distinguishes between
them by examining the first nibble after the address
field epilogue, but the checksum of the second sec-
tor zero also fails verification, which is why the boot
PROM does not see it. This protection cannot be re-
produced by a sector-copier or track-copier, because
those copiers will write only a single sector zero to
a track. It is unpredictable which of the two sector
zeroes would be written, but even if the true one is
chosen, the copy is revealed by the program missing
the duplicated sector.

7.10.7 Sector numbering

The address field carries the sector number, but the
controller does not need or use this information,
except when the boot PROM is requested to read
a sector. Therefore, it is possible to have sectors
whose number is not in the range of zero to 15.47
Any eight-bit value can be used, as long as the pro-
gram is expecting it. This protection cannot be re-
produced by a sector-copier, because the copier will
not copy those sectors at all.

7.10.8 Sector location

The address field carries the track and sector num-
ber, but the controller does not need or use this in-
formation, except when the boot PROM is requested
to read a sector. Therefore, it is possible for a sector
to “lie” about its location on the disk. For example,
the address field of sector three on track zero could
label itself as sector zero on track three. This protec-
tion cannot be reproduced by a sector-copier which
relies on DOS to perform the write, because they will

45This would be the equivalent of about 18.5 256-bytes sectors in “6-and-2” encoding. Using 19 sectors is possible, if the full
range of values from the first figure is used, but it introduces a problem to identify the start of the sector, since there are no
single values that can be reserved exclusively. One possible solution is to find a sequence which cannot appear in user-data due
to particular characteristics of the decoding process. Just because it is possible, it doesn’t mean that it’s easy.

46The same is true for the track number, and Jumble Jet has multiple tracks which claim to be track zero.
47The same is true for the track number. That is, a number which is not in the range of zero to 34.

47

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 D

6
4

2
F

8
A

C E 1
3

5
7

9
B

DOS

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 8

6
E

7
F

D
5

C 4 B
3

A
2

9
1

Pascal
(then ProDOS)

physical
sectors

physical
sectors

logical
numbering

logical
numbering

gap: [7-8]

gap: [2-3]

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0

D

6

4

2
F

8
A

C

E
1

3

5

79

B

Hard Hat Mack

physical
sectors

gap: 1

Figure 16 – Floppy sectors interleaving.

not duplicate this information, because DOS will fill
in the address field by itself when placing the sector
on the disk. Thus, a program that seeks to a track
that contains “misplaced” sectors will not find any
misplaced sectors, or will receive the wrong content
instead.

Discover uses this technique; it changes the iden-
tity of one particular sector in the sector interleave
table, on one particular track.

7.10.9 Synchronised sectors

Since the approximate rotation speed of the drive
is known (∼300 RPM), it becomes possible to place
sectors at specific locations on a track, such that
they have a special position relative to other sec-
tors on the same track. This is difficult to repro-
duce because of the delay that is introduced while a
sector-copier is writing the data.

Hard Hat Mack takes this to the extreme, by re-
quiring that one track has all 16 sectors in incremen-
tal order. This protection is highly unlikely to be
reproduced by using a sector-copier, because after
factoring in the rotation speed of the drive, the next
sector is more likely to be placed halfway around the
disk.

7.10.10 Bad sectors

Some protections rely on the fact that intentionally
bad sectors (for example, checksum mismatch in the
simplest case, but potentially physical damage could
be used, too) should return a read error.

Drelbs uses this technique. This protection can-
not be reproduced even with a bit-copier, because

the copy will have no sectors that cannot be read.

7.10.11 Dead-space bytes

The data for a sector is well defined, but apart from
the optional presence of the self-synchronizing val-
ues, the data between sectors is not defined at all.
As a result, it is not often copied, either. It is possi-
ble to place specific counts of specific values in this
location, which can be checked later. A program
can detect a copy by the absence or wrong count of
the special values.

Randamn checks the value of the byte immedi-
ately before the prologue of a particular sector, and
reboots if the value looks like a self-synchronizing
value. (A bit-copier might insert this values when
asked to match the track length, and a sector-copier
would always insert the value.)

Binomial Multiplication counts the number of
values that appear between the address field epi-
logue and the data field prologue, and between the
data field epilogue and the next sector address field
prologue, for all of the sectors on a particular track.
This protection cannot be reproduced by a sector-
copier or a track-copier, because those copiers will
discard the original data between the sectors.

7.10.12 Timing bits

The Disk][controller shifts in bits at a rate equiv-
alent to one bit every four CPU cycles, once the

48

first one-bit is seen. Thus, a full nibble takes the
equivalent of 32 CPU cycles to shift in. After the
full nibble is shifted in, the controller holds it in the
QA switch of the Data Register for the equivalent of
another four CPU cycles, to allow it to be fetched
reliably. After those four CPU cycles elapse, and
once a one-bit is seen, the QA switch of the Data
Register will be zeroed, and then the controller will
begin to shift in more bits. The significant part of
that statement is “once a one-bit is seen.” It is pos-
sible to intentionally introduce “timing” (zero) bits
into the stream in order to delay the reset. For each
zero-bit that is present, the previous value will be
held for another eight CPU cycles. For code that is
not expecting these zero-bits to be present, a nib-
ble that is being held back will be indistinguishable
from a nibble that has newly arrived.

Creation uses this technique. It looks like this:

; wait f o r n ibb l e to a r r i v e
2 B94F LDA $C08C ,X

B952 BPL $B94F
4 ; watch f o r #$D5

B954 CMP #$D5
6 B956 BNE $B948

; de lay to ensure > 4 cy c l e s w i l l e l ap s e
8 ; b e f o r e the next read occurs

B958 NOP
10 ; read data l a t ch

B959 LDA $C08C ,X
12 ; check i f n ibb l e has changed

; i f zero−b i t i s present ,
14 ; then read value l a s t s l onge r

B95C CMP #$D5
16 B95E BEQ $B972

Hacker II requires a pattern of zero-bits to be
present in the stream. The effect of the delayed
shift becomes clear when we count cycles.

; i n i t i a l i s e mask
2 403A LDA #$08

. . .
4 ; wait f o r n ibb l e to a r r i v e

4044 LDY $C08C ,X
6 4047 BPL $4044 ; 2 c y c l e s

; watch f o r #$FB
8 4049 CPY #$FB ;2 c y c l e s

404B BNE $403A ;2 c y c l e s
10 ; not a do−nothing i n s t r u c t i o n !

; e x i s t s to be timing−i d e n t i c a l
12 ; to the BEQ at $4062

404D BEQ $404F ; 3 c y c l e s
14 404F NOP ; (2 c y c l e s)

4050 NOP ; (2 c y c l e s)
16 ; read data l a t ch

4051 LDY $C08C ,X ; (4 c y c l e s)
18 ; check how many b i t s have s h i f t e d in

4054 CPY #$08

20 ; s h i f t car ry in to A
4056 ROL

22 ; u n t i l a s e t b i t i s s h i f t e d out
; (takes f i v e rounds)

24 4057 BCS $4064
; wait f o r n ibb l e to a r r i v e

26 4059 LDY $C08C ,X
405C BPL $4059 ; 2 c y c l e s

28 ; watch f o r #$FF
405E CPY #$FF ;2 c y c l e s

30 4060 BNE $403A ;2 c y c l e s
4062 BEQ $404F ; 3 c y c l e s

32 ; wait f o r n ibb l e to a r r i v e
4064 LDY $C08C ,X

34 4067 BPL $4064
; remember i t s va lue

36 4069 STY $07
; check i f proper pattern was seen

38 ; (a l t e r n a t i n g zero−b i t yes and no)
406B CMP #$0A

40 406D BNE $403A
; wait f o r n ibb l e to a r r i v e

42 406F LDA $C08C ,X
4072 BPL $406F

44 ; checksum aga in s t prev ious va lue
; both must be #$FF to pass

46 4074 SEC
4075 ROL

48 4076 AND $07
4078 EOR #$FF

50 407A BEQ $4080

The timing loop is long enough for four nibbles
to be shifted in if no zero-bit is present, resulting in
a value of at least #$08. (Specifically the right-hand
“F” from the value “FF”.) If a zero-bit is present,
then fewer than four nibbles will be shifted in, re-
sulting in a value of less than #$08. This explains
the “CPY #$08” instruction at $4054. It is checking
if a one-bit has been shifted in four times or three
times.

The “CMP #$0A” instruction at $406B is check-
ing the final results of the multiple CPYs that were
made. In binary, the results look like 01010 but
prior to that, the results progress like this:
00010000
00100001
01000010
10000101
00001010

That means it is expecting the first pass to have
a value of less than eight (carry clear), then a value
of at least eight (carry set), then a value of less than
eight (carry clear), then a value of at least eight
(carry set), and finally a value of less than eight
(carry clear), followed by two “FF”s. That requires
the stream to look like FB 0 FF FF 0 FF FF 0 Fx

49

FF FF

7.10.13 Floating bits

What happens if more than two consecutive zero-
bits are present in a stream? Something random.
The Automatic Gain Control circuit will eventually
insert a one-bit because of amplified noise. It might
happen immediately after the second zero-bit, or
it might happen after several more zero-bits. The
point is that reading that part of the stream repeat-
edly will yield different responses

Mr. Do! uses this technique.

; s e t counter to be used l a t e r
2 0710 LDY #$06

. . .
4 ; s e t s t a t e

0713 LDA #$FF
6 0715 STA $07C2

; wait f o r n ibb l e to a r r i v e
8 0718 LDA $C088 ,X

071B BPL $0718
10 ; watch f o r #$D5

071D CMP #$D5
12 071F BNE $0718

; wait f o r n ibb l e to a r r i v e
14 0721 LDA $C088 ,X

0724 BPL $0721
16 ; watch f o r #$9B

0726 CMP #$9B
18 0728 BNE $071D

; wait f o r n ibb l e to a r r i v e
20 072A LDA $C088 ,X

072D BPL $072A
22 ; watch f o r #$AB

072F CMP #$AB
24 0731 BNE $071D

; wait f o r n ibb l e to a r r i v e
26 0733 LDA $C088 ,X

7036 BPL $0733
28 ; watch f o r #$B2

0738 CMP #$B2
30 073A BNE $071D

; wait f o r n ibb l e to a r r i v e
32 073C LDA $C088 ,X

073F BPL $073C
34 ; watch f o r #$9E

0741 CMP #$9E
36 0743 BNE $071D

; wait f o r n ibb l e to a r r i v e
38 0745 LDA $C088 ,X

0748 BPL $0745
40 ; watch f o r #$BE

074A CMP #$BE
42 074C BNE $071D

; wait f o r n ibb l e to a r r i v e
44 074E LDA $C088 ,X

0751 BPL $074E
46 ; loop s i x t imes

0753 DEY
48 0754 BNE $074E

; change s t a t e
50 0756 INC $07C2

0759 BNE $2761
52 ; s t o r e l a s t read value on f i r s t pass

075B STA $07C3
54 ; a l low complete r evo l u t i on and read again

075E JMP $071D
56 ; check l a s t read value on subsequent pass

; must be d i f f e r e n t from the f i r s t pass
58 0761 CMP $07C3

0764 BNE $0771
60 ; r e t r y up to four t imes

0766 INC $07C2
62 0769 LDA $07C2

076C CMP #$08
64 076E BNE $271D

On the first pass, the program watches for the
sequence $#D5 #$9B #$AB #$B2 #$9E #$BE, skips
the next five nibbles, and then reads and saves the
sixth nibble. On subsequent passes, the program
watches again for the sequence $#D5 #$9B #$AB
#$B2 #$9E #$BE, skips the next five nibbles, and
then reads and compares the sixth nibble against
the sixth nibble that was read initially. The value
that is read will always be a legal value, but on the
original disk, with multiple zero-bits in the stream,
the value that was read in one of the subsequent
passes will not match the value that was read in
the first pass. No matter how many extra zero-bits
existed in the stream, the bit-copier will not write
them out. Instead, it will “freeze” the appearance
of the stream, and normalise it so that there are no
more than two zero-bits emitted. As a result, the
sixth nibble that was read will have the same value
for all passes, and therefore fail the protection check

7.10.14 Nibble count

Since a track is simply a stream of bits, it is possible
to control the layout of the values in that stream, as
long as it follows the rules of the hardware. The
number of self-sychronizing values can be reduced
to a single set of the minimum number, if perfor-
mance is not a consideration. That means there are
no other zero-bits present on the track. However, a
bit-copier cannot detect the zero-bits reliably (nei-
ther their presence, nor their number), so it is left to
guess if the value #$FF must be stored using eight
or ten bits. (That is, if it is a data nibble or a
self-synchronizing value.) If there are enough #$FF
bytes on a track, and if the bit-copier assumes that
every one of them must be ten bits wide, then it
is possible that the bit-copier will write more data

50

than can fit on the track, resulting in part of the
track being overwritten when the revolution com-
pletes before the write completes.

As a separate technique, it is also possible to re-
duce the speed of the drive while writing the data to
the original disk, resulting in a track that is so dense,
that the data cannot fit on a disk when written at
regular speed. This is known as a “fat” track.

The more common technique is to simply use a
sequence of nibbles with enough zero-bits between
them, that the “delayed fetch” effect is triggered.
(§7.10.12.) When the zero-bits are present, and if
the fetch is fast enough (that is, it polls the QA
switch of the Data Register while the top bit is clear,
stores the fetched value, and then resumes polling),
then there will appear to be more nibbles of a par-
ticular value than really exist, because the next bit
will not be ready to shift in. A program that counts
the number of nibbles will see more nibbles in the
copy than in the original.

If the fetch is slow enough. . . now, this is an in-
teresting case. Bit-copiers try to read the data as
quickly as it comes in. This is done not by polling
the QA switch of the Data Register, but by checking
if the top bit is already set, in an unrolled loop, like
this:

; 2 c y c l e de lay so
2 ; s h i f t might f i n i s h

TDL1 NOP
4 ; t ry to de t e c t t iming b i t

LDA $C0EC, X
6 BMI TDS2

TDL2 LDA $C0EC, X
8 BMI TDS2

; t iming b i t probably pre sent
10 LDA $C0EC, X

BMI TDS3
12 LDA $C0EC, X

BMI TDS3
14 LDA $C0EC, X

BMI TDS3
16 LDA $C0EC, X

BMI TDS3
18 ; 3 cy c l e pena l ty i f taken !

BPL TDL2
20 TDS2 STA ($0) , Y

. . .
22 RTS

; s t o r e va lue with t iming b i t
24 ; l o s e s one b i t as a r e s u l t

TDS3 AND #$7F
26 STA ($0) , Y

. . .
28 RTS

This code is a disassembly from Essential Data

Duplicator (E.D.D.), but apart from the BPL in-
struction, it is shared by Copy][+. (Someone
copied!) Normally, a nibble will be shifted in be-
fore TDL2 completes, so that TDS2 is reached, and
the nibble is stored intact. However, by using only
six fetches, the code is vulnerable to a well-placed
timing bit, such that the BPL will be reached just
before the last bit of the nibble is shifted in. That
three-cycle time penalty when the branch is taken
is just enough that, when combined with the two-
cycle instruction before it, the shift will complete,
and the four CPU cycles will elapse, before the next
read occurs. The result is that the nibble is missed,
and the next few nibbles that arrive will reach TDS3
instead, losing one bit each. When those data are
written to disk by the bit-copier, the values will be
entirely wrong.

Create With Garfield: Deluxe Edition uses this
technique. (The original Create With Garfield uses
an entirely different protection.) It has one track
that is full of repeated sequences. Each of the se-
quences has a prologue of five bytes in length. Every
second one of the prologues has a timing bit after
each of the five bytes in the prologue. In the mid-
dle of the track is a collection of bytes which do not
match the sequence, so the track is essentially split
into two groups of these repeated sequences. The
size of the two groups is the same. When the bit-
copier attempts to read the data, the timing bits
cause about half of the sequences to be lost. What
remain are far fewer sequences than exist on the
original disk. (Enough of them that the bit-copier
mistakenly believes that it has copied the track suc-
cessfully.) A program can detect a copy by the small
count of these sequences. This technique is likely to
have been created to defeat E.D.Dṡpecifically, but
Copy][+ is also affected. However, the protection
can be reproduced with the use of a peripheral that
connects to the drive controller (and thus see the
zero-bits for exactly what they are), or by inserting
an additional fetch in the software.

7.10.15 Bit-flip, or defeat bit-copiers with
this one weird trick

Deeply technical content follows. Prepare yourself!
Let’s take this simple sentence (sorry, but it’s the

best example that I could create at the time):
ITHASGOTTOBETHISLANDAHEAD

And split it according to some potential word
boundaries:
IT HAS GOT TO BE THIS LAND AHEAD

51

Now we skip a bit:
OTTO BETH ISLAND AHEAD

A bit more:
TO BETH ISLAND AHEAD

A bit more still:
BET HIS L AND A HEAD

Okay, that last one doesn’t make much sense,
but I wanted a sentence which could be read differ-
ently, depending on where you started reading, as
opposed to a series of arbitrary overlapping words.
In any case, it’s clear that depending on where you
start reading, you can get vastly different results.
Something similar is possible while reading the bit-
stream from the disk. After a nibble is shifted in
(determined by the top bit being set), and the four
CPU cycles have elapsed, and once the one-bit is
seen, then the QA switch of the Data Register is set
to zero. The absence of a counter allows the hard-
ware to be fooled about how many bits have been
read. Specifically, the controller can be convinced
to discard some of the bits that it has read from the
disk while forming a nibble, and then the starting
position within the stream will be shifted accord-
ingly. This is possible with a single instruction, in
conjunction with an appropriate delay.

After issuing an access of Q6H ($C08D+(slot ×
16)), the QA switch of the Data Register will receive
a copy of the status bits, where it will remain acces-
sible for four CPU cycles. After four CPU cycles,
the QA switch of the Data Register will be zeroed.
Meanwhile, assuming that the disk is spinning at
the time, the Logic State Sequencer (LSS) contin-
ues to shift in the new bits. When the QA switch of
the Data Register is zeroed, it discards the bits that
were already shifted in, and the hardware will shift
in bits as though nothing has been read previously.
Let’s see that in action

Tinka’s Mazes does it this way, beginning with
some preamble code which is common to many pro-
grams that used this technique

BB6A LDY #0
2 ; wait f o r n ibb l e to a r r i v e

BB6C LDA $C08C ,X
4 BB6F BPL $BB6C

BB71 DEY
6 ; r e t r y up to 256 t imes

BB72 BEQ $BBBB
8 ; watch f o r #$D5

BB74 CMP #$D5
10 BB76 BNE $BB6C

BB78 LDY #0
12 ; wait f o r n ibb l e to a r r i v e

BB7A LDA $C08C ,X
14 BB7D BPL $BB7A

BB7F DEY
16 ; r e t r y up to 256 t imes

BB80 BEQ $BBBB
18 ; watch f o r #$E7

BB82 CMP #$E7
20 BB84 BNE $BB7A

; wait f o r n ibb l e to a r r i v e
22 BB86 LDA $C08C ,X

BB89 BPL $BB86
24 ; watch f o r #$E7

BB8B CMP #$E7
26 BB8D BNE $BBBB

; wait f o r n ibb l e to a r r i v e
28 BB8F LDA $C08C ,X

BB92 BPL $BB8F
30 ; watch f o r #$E7

BB94 CMP #$E7
32 BB96 BNE $BBBB

52

Here is the switch:

; t r i g g e r desync
2 BB98 LDA $C08D ,X

BB9B LDY #$10
4 ; de lay to ensure > 4 cy c l e s w i l l e l ap s e

; b e f o r e the next read occurs
6 BB9D BIT $6

; wait f o r n ibb l e to a r r i v e
8 BB9F LDA $C08C ,X

BBA2 BPL $BB9F
10 BBA4 DEY

; r e t r y up to 16 t imes
12 BBA5 BEQ $BBBB

; watch f o r #$EE
14 BBA7 CMP #$EE

BBA9 BNE $BB9F
16 BBAB LDY #7

; wait f o r n ibb l e to a r r i v e
18 BBAD LDA $C08C ,X

BBB0 BPL $BBAD
20 ; compare backwards aga in s t the l i s t at $BBC1

; E7 FC EE E7 FC EE EE FC
22 BBB2 CMP ($48) ,Y

BBB4 BNE $BBBB
24 BBB6 DEY

BBB7 BPL $BBAD
26 ; pass

BBB9 CLC
28 BBBA RTS

BBBB DEC $50
30 ; r e t r y i f count remains

BBBD BNE $BB57
32 ; f a i l

BBBF SEC
34 BBC0 RTS

BBC1 .BYTE $FC, $EE , $EE , $FC, $E7 , $EE , $FC,
$E7

But wait, there’s more! To see the bitstream
on disk, it looks like D5 E7 E7 E7 E7 E7 E7 E7 E7
E7 E7 E7 with some harmless zero-bits in between.
So from where do the other values come? Since the
magic is in the timing of the reads, we must count
cycles:

1 BB8F LDA $C08C ,X
BB92 BPL $BB8F ;2 c y c l e s

3 BB94 CMP #$E7 ; 2 c y c l e s
BB96 BNE $BBBB ;2 c y c l e s

5 BB98 LDA $C08D ,X ;4 c y c l e s
BB9B LDY #$10 ; 2 c y c l e s

7 BB9D BIT $6 ; 3 c y c l e s
; t o t a l : 15 c y c l e s

Time passes. . .

One bit is shifted in every four CPU cycles, so a
delay of 15 CPU cycles is enough for three bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it looks like the following, with
the seemingly redundant zero-bits in bold.
11100111 0 11100111 00 11100111 11100111 0
11100111 00 11100111 11100111 0 11100111 0
11100111 11100111
However, by skipping the first three bits, the stream
looks like this:
00 11101110 0 11100111 00 11111100 11101110
0 11100111 00 11111100 11101110 0 11101110 0
11111100 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to E7 FC EE E7 FC EE EE FC, and we have
our magic values

Programs from Epyx that use this protection do
not compare the values in the pattern. Instead, the
values are used as a key to decode the rest of the
data that are loaded. This hides the expected val-
ues, and causes the program to crash if they are
altered.

The Thunder Mountain version of Dig Dug uses
a slight variation on the technique, including a dif-
ferent preamble and switch. The company seems
to have kept the variation to themselves. (Bop’N
Wrestle from 1986 uses the same altered version,
and comes from Mindscape, but Mindscape owned
the Thunder Mountain label, so the connection is
clear.)48 That version looks like this:

0224 LDY #$00
2 ; wait f o r n ibb l e to a r r i v e

0226 LDA $C08C ,X
4 0229 BPL $2226

022B DEY
6 ; r e t r y up to 256 t imes

022C BEQ $2275
8 022E CMP #$AD

0230 BNE $2226

A different prologue value is checked, allowing
the bitstream to begin like a regular sector: D5 AA
AD. . .

Here is the switch:

1 ; t r i g g e r desync
0252 LDA $C08D ,X

48Interestingly, one title from Thunder Mountain and released in the same year is known to use the regular version. It is
entirely possible that the alternative version was developed in-house to avoid paying royalties to protect other products.

53

3 0255 LDY #$10
; no de lay i n s t r u c t i o n in t h i s v e r s i on

5 ; wait f o r n ibb l e to a r r i v e
0257 LDA $C08C ,X

7 025A BPL $2257
025C DEY

9 ; r e t r y up to 16 t imes
025D BEQ $2275

11 ; watch f o r #$E7 instead , but i t ’ s not a ‘ ‘
true ’ ’ E7

025F CMP #$E7
13 0261 BNE $2257

; and double the s i z e o f the pattern to match
15 0263 LDY #$0F

The bitstream on disk looks like D5 AA AD
[many 96s] E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7
with some harmless zero-bits in between. The
desync timing is only 12 cycles, but the required
pattern is not found right away, so the delay is
not as interesting. In binary, the stream looks
like 11100111 11100111 11100111 00 11100111 0
11100111 0 11100111 0 11100111 00 11100111 00
11100111 0 11100111 00 11100111 0 11100111 0
11100111 0 11100111 00 11100111 0 11100111 00
11100111 0 11100111 0 11100111 with the seemingly
redundant zero-bits in bold. However, by skipping
the first three bits, the stream looks like this:
00 11111100 11111100 11100111 (← E7, but not
aligned) 00 11101110 0 11101110 0 11101110 0
11100111 00 11100111 00 11101110 0 11100111
00 11101110 0 11101110 0 11101110 0 11100111
00 11101110 0 11100111 00 11101110 0 11101110
0 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to FC (ignored) FC (ignored) E7 EE EE EE
E7 E7 EE E7 EE EE EE E7 EE E7 EE EE, a very
smooth sequence indeed. Put simply, each single
bold zero-bit sequence results EE being seen, and ev-
ery double bold zero-bit sequence results in E7 being
seen, allowing easy control over exactly how smooth
the sequence is.

1-2-3 Sequence Me uses the same technique but
with different values:

1 ; wait f o r n ibb l e to a r r i v e
BA5B LDA $C08C ,X

3 BA5E BPL $BA5B
; watch f o r #$AA

5 BA60 CMP #$AA
BA62 BEQ $BA7A

7 . . .
BA7A LDY #$02

9 ; t r i g g e r desync
BA7C LDA $C08D ,X

11 ; de lay whi l e s t a tu s i s loaded
BA7F PHA

13 ; ba lance s tack
BA80 PLA

15 ; wait f o r n ibb l e to a r r i v e
BA81 LDA $C08C ,X

17 BA84 BPL $BA81
; watch f o r #$BB

19 BA86 CMP #$BB
BA88 BEQ $BA8F

21 BA8A DEY
; r e t r y i f count remains

23 BA8B BPL $BA81
; f a i l

25 BA8D BMI $BA77
; wait f o r n ibb l e to a r r i v e

27 BA8F LDA $C08C ,X
BA92 BPL $BA8F

29 ; watch f o r #$F9
BA94 CMP #$F9

31 BA96 BNE $BA77

That stream looks like AA EB 97 DF FF with
some harmless zero-bits in between. Now let’s count
the cycles:

1 BA5B LDA $C08C ,X
BA5E BPL $BA5B ;2 c y c l e s

3 BA60 CMP #$AA ;2 c y c l e s
BA62 BEQ $BA7A ;3 c y c l e s

5 . . .
BA7A LDY #$02 ; 2 c y c l e s

7 BA7C LDA $C08D ,X ;4 c y c l e s
BA7F PHA ;3 c y c l e s

9 ; t o t a l : 16 c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 16 CPU cycles is enough for four bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it would look like this:
11101011 0 10010111 0 11011111 00 11111111
with the seemingly redundant zero-bits in bold.
However, by skipping the first four bits, the stream
looks like this:
10110100 10111011 0 11111001 111111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to B4 (ignored) BB F9 Fx, and we have our
magic values.

The 4th R: Reasoning uses another variation of
this technique. Instead of matching the values ex-
plicitly, it watches for the data field on a particular
sector, waits for three nibbles and three bits to pass,

54

and then reads and stores the next 16 nibbles in an
array. Then it calculates a checksum of those 16
nibbles, and uses the checksum as an index into the
table of those 16 nibbles, to fetch two 8-bit keys in a
row. The table is treated as a circular list, so if the
index were 15, then the two keys would be formed
by fetching the last entry in the array and the first
entry in the array. The keys are used to decipher
the other nibbles that are read from all of the other
sectors on the disk. It looks like this:

1 ; wait f o r n ibb l e to a r r i v e
BB63 LDA $C08C ,X

3 BB66 BPL $BB63
; wait f o r n ibb l e to l eave

5 ; i f zero−b i t i s present ,
; then read value l a s t s l onge r

7 BB68 LDA $C08C ,X
BB6B BMI $BB68

9 ; wait f o r n ibb l e to a r r i v e
BB6D LDA $C08C ,X

11 BB70 BPL $BB6D
; t r i g g e r desync

13 BB72 STA $C08D ,X
; de lay to reduce number o f t imes

15 ; that branch w i l l be taken
BB75 NOP

17 ; wait f o r s t a tu s va lue to l eave
; i f zero−b i t i s present ,

19 ; then read value l a s t s l onge r
BB76 LDA $C08C ,X

21 BB79 BMI $BB76
; wait f o r next n ibb l e to a r r i v e

23 BB7B LDA $C08C ,X
BB7E BPL $BB7B

That stream looks like CF CF 9E FD ED BB E6
B6 ED FB FC EB DF DE D3 D9 FF D9 DD D7 with
some harmless zero-bits in between. Now let’s count
those cycles:
BB63 LDA $C08C ,X

2 BB66 BPL $BB63
BB68 LDA $C08C ,X

4 BB6B BMI $BB68
BB6D LDA $C08C ,X

6 BB70 BPL $BB6D ;2 c y c l e s
BB72 STA $C08D ,X ;5 c y c l e s

8 BB75 NOP ;2 c y c l e s
BB76 LDA $C08C ,X ;4 c y c l e s

10 ; but +4 cy c l e s f o r each time reached
; because o f zero−b i t

12 BB79 BMI $BB76 ; 2 c y c l e s
; but +3 cy c l e s f o r each time

14 ;BMI i s taken because o f zero−b i t
; t o t a l 15 (or 22 or even 29) c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits

to be shifted in. A delay of 22 CPU cycles would
normally be enough for five bits to be shifted in.
However, if the delay is caused by the presence of a
zero-bit, then it behaves as though the delay were
only 18 CPU cycles, which is enough for four bits to
be shifted in. A delay of 29 CPU cycles is enough
for seven bits to be shifted in. However, if the delay
is caused by the presence of a second zero-bit, then
it behaves as though the delay were only 21 CPU
cycles, which is enough for five bits to be shifted in.
In any case, the routine is written to discard a fixed
number of regular bits, along with any zero-bits that
are also present. Back to our stream, in binary, it
would look like this:
11001111 11001111 0 10011110 11111101 0 11101101
10111011 11100110 10110110 11101101 11111011 0
11111100 11101011 11011111 11011110 11010011
11011001 11111111 11011001 11011101 0 11010111
with the seemingly redundant zero-bits in bold.
However, by skipping the first three bits, the stream
looks like this:
0 11110100 11110111 11101011 10110110 11101111
10011010 11011011 10110111 11101101 11111001
11010111 10111111 10111101 10100111 10110011
11111111 10110011 10111010 11010111

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This
decodes to F4 F7 (both ignored) EB B6 EF 9A DB
B7 ED F9 D7 BF BD A7 B3 FF B3 BA. The trailing
values are stored backwards, and the checksum is
#$67. The low four bits (7) are the index into the
table, and the values at offset 7 and 8 are #$D7 and
#$F9.

A bit-copier that misses any of these zero-bits
will write a track whose length and contents do not
match the original

7.10.16 Race conditions

Page 4 of the Software Control of the Disk][or IWM
Controller document states that “The Disk][con-
troller hardware will keep the ENABLE/ signal to
its active low state for approximately one second af-
ter the execution of the motor off instruction, there-
fore read/write can be performed reliably within this
period.” So, a program can issue the motor off in-
struction, and then read sector data successfully for
up to one second afterwards.

This behavior functions as a very nice anti-
debugging mechanism, since single-stepping through
the disk access code, after the motor-off instruction

55

has been issued, will cause the time period to be
exceeded. Thus, the disk won’t be readable at that
time. Sherwood Forest uses this technique.

Page 4 of the Software Control of the Disk][or
IWM Controller document also states that “. . . the
program should verify that the motor is spinning by
monitoring the change in data pattern read from the
drive.” That is to say, while the drive is spinning,
the value will change. Once the drive stops spinning,
the value will not change anymore.

Lady Tut uses this technique. It issues the
motor-off instruction, and then reads continually
from the drive until it sees two consecutive bytes of
the same value. The program assumes at that point
that the drive is no longer spinning. Periodically
thereafter, the program reads from the QA switch
of the Data Register, and compares the newly read
value with the initially read value. If a different
value is seen, then the program triggers a reboot.

In section 9-14 of Understanding the Apple][,
Jim Sather says, “any even address could be used
to load data from the data register to the MPU, al-
though $C088 . . . would be inappropriate.” It might
be considered inappropriate because of the one-
second window noted previously, but that’s exactly
how the program Mr. Do! uses it. By reading from
$C088, the program is able to issue the motor off
instruction, and fetch the data at the same time. It
is compact and useful for anti-debugging.

Faster pussycat

Another kind of race condition revolves around how
quickly the data can be read from the disk. Bor-
rowed Time, for example, reads an entire track in
one revolution. In an interview for the Open Ap-
ple podcast, Rebecca Heineman says that she per-
forms the decoding while the seek is in progress.
While this is certainly possible, it would incur the
significant overhead of having to store all 16 of the
two-bit arrays—a total of 1.3kB! — before any de-
coding could occur. Of course, this is not what was
done. Instead, each sector is read individually, but
the denibbilisation is interleaved with the read. It
means that the sector is decoded directly into mem-
ory, with only 86 bytes of overhead for a single two-
bit array, and the use of two tables of 106 bytes and
256 bytes respectively. It is obviously fast enough
to catch the next sector that arrives

The code looks like this, after validating the data
field prologue:

1 0946 LDY #$AA
; zero r o l l i n g checksum

3 0948 LDA #0
094A STA $26

5 ; wait f o r n ibb l e to a r r i v e
094C LDX $C0EC

7 094F BPL $94C
; index in to t ab l e o f o f f s e t s o f s t r u c t u r e s

9 0951 LDA $A00 ,X
; s t o r e o f f s e t

11 0954 STA $200 ,Y
; update r o l l i n g checksum

13 0957 EOR $26
; f e t ch 86 t imes

15 0959 INY
095A BNE $94A

17 095C LDY #$AA
095E BNE $963

19 ; s t o r e decoded value
0960 STA $9F55 ,Y

21 ; wait f o r n ibb l e to a r r i v e
0963 LDX $C0EC

23 0966 BPL $963
; update r o l l i n g checksum

25 0968 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 0−1

27 096B LDX $200 ,Y
; merge f i r s t member o f two−b i t s t r u c tu r e

29 ; with s ix−b i t va lue to r e cove r e ight−b i t
va lue

096E EOR $B00 ,X
31 ; loop 86 t imes

0971 INY
33 0972 BNE $960

; save 85 th decoded value f o r l a s t
35 0974 PHA

; c l e a r low two b i t s
37 0975 AND #$FC

0977 LDY #$AA
39 ; wait f o r n ibb l e to a r r i v e

0979 LDX $C0EC
41 097C BPL $979

; update r o l l i n g checksum
43 097E EOR $A00 ,X

; f e t ch s t r u c tu r e o f f s e t , b i t s 2−3
45 0981 LDX $200 ,Y

; merge second member o f two−b i t s t r u c tu r e
47 ; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
0984 EOR $B01 ,X

49 ; s t o r e decoded value
0987 STA $9FAC,Y

51 ; loop 86 t imes
098A INY

53 098B BNE $979
; wait f o r n ibb l e to a r r i v e

55 098D LDX $C0EC
0990 BPL $98D

57 ; c l e a r low two b i t s
0992 AND #$FC

59 0994 LDY #$AC
; update r o l l i n g checksum

61 0996 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 4−5

56

63 ; o f f s e t −2 to account f o r Y+2
0999 LDX $1FE ,Y

65 ; merge th i rd member o f two−b i t s t r u c tu r e
; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
67 099C EOR $B02 ,X

; s t o r e decoded value
69 099F STA $A000 ,Y

; wait f o r n ibb l e to a r r i v e
71 09A2 LDX $C0EC

09A5 BPL $9A2
73 ; loop 84 t imes

09A7 INY
75 09A8 BNE $996

; c l e a r low two b i t s
77 09AA AND #$FC

; update r o l l i n g checksum
79 09AC EOR $A00 ,X

; r e s t o r e s l o t to X
81 09AF LDX $2B

; r e t r y i f checksum mismatch
83 09B1 TAY

09B2 BNE $9BD
85 ; wait f o r n ibb l e to a r r i v e

09B4 LDA $C0EC
87 09B7 BPL $9B4

; check only f i r s t ep i l o gue byte
89 09B9 CMP #$DE

09BB BEQ $9BF
91 09BD SEC

09BE .BYTE $24
93 09BF CLC

; s t o r e 85 th decoded value
95 09C0 PLA

09C1 LDY #$55
97 09C3 STA ($44) ,Y

09C5 RTS

The exact way in which the technique works is as
follows. First, each of the two-bit values is read into
memory, but instead of storing them directly, the
values are used as an index into the 106-bytes table.
The 106-bytes table serves two purposes. The first,
in the context of the two-bit values, is as an array
of offsets within the 256-bytes table. The second, in
the context of the six-bit values, is as an array of
pre-shifted values for the six-bit nibbles. The 256-
bytes table is composed of groups of two-bit values
in all possible combinations for each of the three po-
sitions in a nibble. To produce the eight-bit value,
each of the pre-shifted six-bit values is ORed with
the corresponding two-bit value. It is unknown why
the 85th value is treated separately from the rest in
that code; it could certainly be decoded at the same

time, saving five lines.
With the benefit of determination to improve it,

and the ability to do so, I rewrote this loader to de-
code all of the bytes directly, reduced the size of the
code, and made it even faster. I call it “0boot.”49
Then I reduced the overhead to just two bytes, if
page $BF is not the destination. I call that one “q-
boot.”50 The two tables are still 106 bytes and 256
bytes respectively. It might appear that the second
table can be reduced to 192 bytes, since the other 64
bytes are unused. However, it is not possible for this
algorithm, because the alignment is required to sup-
ply the pre-shifted values. If the table were reduced
in size, then additional operations would be required
to reproduce the effect of the shift, and which would
take longer to execute than the time available before
the next nibble arrived.

Interestingly, Heineman claims to have created
and released the technique in 1980,51 but it was
apparently not until 1984 that she used it in a re-
lease herself. It certainly existed in 1980, though.
Automated Simulations (which later became Epyx)
included the technique with the programs Hellfire
Warrior and Rescue At Rigel. In 1983, Free Fall As-
sociates (founded by the co-founder of Automated
Simulations, whose last name begins with “Free”,
and a programmer whose last name ends with “Fall”)
included the technique with the programs Murder on
the Zinderneuf and Archon. (Apparently they took
it with them, as Epyx did not use it again.) Also in
1983, Apple included the technique in ProDOS. In
1985, Brøderbund included the technique with the
program Captain Goodnight. According to Roland
Gustafsson, Apple supplied that code.52

49http://pferrie.host22.com/misc/0boot.zip
50http://pferrie.host22.com/misc/qboot.zip
51Personal communication
52Personal communication

57

Also interestingly, whoever included it in the
Free Fall Associates programs either did not under-
stand it, or just did not want to touch it—there,
the loader has been patched to require page-aligned
reads, but the code still performs the initialisation
for arbitrary addressing. Twelve lines of code could
have been removed from that version. The Inter-
play programs that use the technique also require
page-aligned reads, but do not have the unnecessary
initialisation code.

Quote of the day by Olivier Guinart, “It’s ironic
that the race condition would be used by a program
called Borrowed Time.”

7.11 Track-level protections
7.11.1 Track length

The length of a track might not be constant across
all of the tracks on a disk. The speed of the drive is
the primary reason: the faster the drive, the shorter
the track (that is, fewer nibbles can be written) be-
cause of the larger gaps between the nibbles.

Wizardry determines the length of the track, by
measuring the time between succeeding arrivals of
sector zero, and then calculates the deviation from
the expected value. This deviation value is applied
to the length of several other tracks, and the result
is compared against the expected lengths. If the
length of the track is not within the range that is
expected, then the program hangs. This protection
cannot be reproduced by a sector-copier or track-
copier, because they will discard the original data
between the sectors, thus altering the length of the
track. A bit-copier can usually reproduce this pro-
tection because it writes the entire track mostly as
it appeared originally, so the track length is at least
similar to the original.

7.11.2 Track positioning

The stepper motor in the Disk][system is composed
of four magnets. To advance a whole track requires
activating and deactivating two phases in the proper
order, and with a sufficient delay, for each track to
step. To step to a later track, the next phase must be
activated while the other phases are deactivated. To
step to an earlier track, the previous phase must be
activated while the other phases are deactivated. As
might be expected, activating and then deactivating
only one of the phases will cause the stepper to stop
half-way between two tracks. This is a half-track po-
sition. It is even possible to produce quarter-track
stepping reliably, by performing the half-track step-
ping method, but with a smaller delay. Depending
on the hardware, it can also be done by activating
two of the phases, and then deactivating only one
of them. This last technique is used by Spiradisc.
(§7.11.9.)

The issue with half-track and quarter-track posi-
tioning is that data written to these partial track po-
sitions will cause signal interference with data writ-
ten to the neighbouring half-track or quarter-track
at the same relative position. To avoid unintentional
cross-talk, data can be written to only part of the
track such that there is no overlap, or placed at least
three-quarters of a track apart. (The reliability of
three-quarter tracks is questionable.)

The maximum amount of data that can be
placed at partial-track intervals is proportional to
the stepping—a quarter of a track for each of four
consecutive quarter-tracks, half of a track for each of
two consecutive half-tracks, or a full track for con-
secutive three-quarter-tracks. There can be a sig-
nificant performance hit to access the data, too—it
requires an almost complete rotation to reach the
start of the data on subsequent tracks if the maxi-
mum density is used, because the seek time is long
enough that the start will be missed on the first time
around. As a result, the most common amount that
is used is only a quarter of the track, and placed far
enough around the track that the read can be per-
formed almost continuously. Programs that make
use of partial tracks usually include a standard for-
mat of individual sectors, so the only trick to the
protection is the location of the data on the disk.

Agent USA uses the half-track technique with
five sectors per track.

58

Championship Lode Runner uses an alternating
quarter-track technique with just two sectors per
track but of twice the size. While loading, the access
alternates between the neighbouring quarter-tracks,
resulting in the drive “chattering”, but allowing the
sectors to be spaced only half of a rotation apart. In
both cases of the programs here, it results in an ex-
tremely fast load time because of the reduced head
movement.

In this case, the protection is the use of partial
tracks. Copy programs which do not copy the par-
tial tracks (and copying partial tracks is not the de-
fault behavior) will fail to reproduce the protection.

7.11.3 Synchronised tracks

If the approximate rotation speed of the drive is
known, then it becomes possible to place sectors at
specific locations on tracks, such that they have a
special position relative to sectors on other tracks.
This technique is identical to synchronized sectors,
except that it spans tracks, making it even more
difficult to reproduce, because it is difficult to de-
termine the relative position of sectors across tracks.
Unlike “spiral tracking” (§7.11.4), this technique lim-
its itself to checking for the existence of particular
sectors, rather than actually reading them.

Blazing Paddles uses this technique. Once it
finds sector zero on track zero, as a known starting
point, it seeks to track one, reads the address field of
the next sector to arrive, and then compares it to an
expected value. If the proper sector is found, then
the program seeks to track two, reads the address
field of the next sector to arrive, and compares it
to an expected value. If the proper sector is found,
then the program seeks to track three. This is re-
peated over eight tracks in total. It means that the
original disk has one sector placed at a specific lo-
cation on each of eight consecutive tracks, relative
to sector zero of track zero, such that it factors in
how much the disk rotates during the time that the
controller takes to move the head from track zero.
It also supports slight variations in rotation speed,
such that the read can begin anywhere after the ad-
dress field for the previous sector, without failing
the protection.

7.11.4 Track spiralling
spiral track

4

quarter-track
layout

1 2

4

5

76

8 3

1

2

3

5

6

7

8

“Track spiralling” or “spiral tracking” is a tech-
nique whereby the data is placed in partial-track
intervals, but treated as a complete track. By mea-
suring the time to move the head to a partial-track,
the position on the track can be known, such that
the next sector to be read will have a predictable
number, and therefore can be read without valida-
tion, once the start of the sector is found. A copy of
the disk will not place the data at the same relative
position, causing the protection to fail. The step-
ping in spiral tracking goes in only one direction.
A visualisation of the data access would look like a
broken spiral, hence the name.

One major problem with spiral tracking is that
variations in rotation speed can result in the read
missing its queue and not finding the expected sec-
tor. For 30 years, I believed a claim53 that the
program Captain Goodnight uses this technique. It
doesn’t. The Observatory uses a spiral pattern for
faster loading, but still verifies the sector number
first. However, the program LifeSaver uses true spi-
ral tracking.

7.11.5 Track arcing

“Track arcing” uses the same principle as spiral
tracking, but instead of stepping in only one direc-
tion, it reaches a threshold and then reverses direc-
tion.

7.11.6 Track mirroring

Track mirroring should be placed conceptually be-
tween synchronized tracks and spiral tracking. As

53From a cracker whose crack-screens were displayed only by pressing a particular key-sequence during the boot. They were
known as “Hidden Pages” (Imagine that—a cracker who didn’t want to brag openly!) Both of the programs Captain Goodnight
and Where In The World Is Carmen Sandiego (first release) use alternating quarter-tracks—the same technique as in the pro-
gram Championship Lode Runner. (The former two were released within a year of the latter one.) The sectors are placed in
a N/S/E/W orientation on the first two tracks, a NW/SE/NE/SW orientation on the next two tracks, and then back to the
N/S/E/W orientation on the next two tracks, and so on. The loader will allow an entire revolution to pass, if necessary, in
order to find the requested sector. The tracks are synchronized, however, because they must be to avoid cross-talk. (§7.11.7.)

59

with synchronized tracks, it expects a particular sec-
tor to be found after stepping across multiple tracks.
As with spiral tracking, it reads the sector data.
However, unlike spiral tracking, it verifies that the
contents of that sector match exactly the contents
of all of the other sectors that are synchronized sim-
ilarly across the tracks.

The Toy Shop uses this technique. It reads three
consecutive quarter-tracks in RWTS18 format, and
verifies that they all fully readable and have a valid
checksum. This is possible only because they are
identical in their content and position. The con-
tents of the last quarter-track are used to boot the
program. A funny thing occurs when the program is
converted to a NIB image: the protection is defeated
transparently, because NIB images do not support
partial tracks, so the attempt to read consecutive
quarter-tracks will always return identical data, ex-
actly as the protection requires.

Pinball Construction Set uses this technique. It
reads a sector then activates a phase to advance the
head, and then proceeds to read a sector while the
head is moving. The head continues to drift over the
track while the sector is being read. After reading
the sector, the program deactivates the phase, reads
another sector, and then completes the move to the
next track. Once there, it reads a sector. It activates
a phase to retreat the head, and then performs the
same trick in reverse, until the start of the track is
reached again. It performs this sequence four times
across those two tracks, which makes the drive hiss.
The program is able to read the sector as continuous
data because the disk has consecutive quarter-tracks
that are identical in their content and position.

7.11.7 Cross-talk

While cross-talk is normally something to be
avoided, it can serve as a copy-protection mecha-
nism, by intentionally allowing it to occur. It mani-
fests itself in a manner similar to the effect of having
excessive consecutive zero-bits being present in the
stream, where reading the same stream repeatedly
will yield different values. The lack of such an effect
indicates the presence of a copy.

7.11.8 More tracks

Many disk drives had the ability to seek beyond
track 34, and many disks also carried more than
35 tracks. However, since DOS could not rely on
the presence of either of these things, it did not

offer support for them. Some copy programs did
not support the copying of additional tracks for the
same reason. Of course, programmers who did not
use DOS had no such limitation. While the actual
number of available tracks could vary up to 40 or
even 42, it was fairly safe to assume that at least
one track existed, and could be read by direct use
of the disk drive.

Faial uses this technique to place data on track
35.

7.11.9 SpiraDisc

No description of copy-protection techniques could
be complete without including SpiraDisc. This pro-
gram was a protection technology that introduced
the idea of spiral tracking, though the implementa-
tion is not spiral tracking as we would describe it
today. It is, in fact, a precise placement of multi-
ple sectors on quarter-tracks, such that there is no
cross-talk while reading them, but without a specific
order. The major deviation from the current idea of
spiral tracking is that there is no synchronization
of the sectors beyond avoiding cross-talk. The pro-
gram will allow a complete rotation of the disk to
occur, if necessary, while searching for the required
sector.

The first-stage boot loader is a single sector that
is “4-and-4” encoded, and 768 bytes long. The sec-
ond stage loader is composed of ten regular sectors
that are “6-and-2” encoded. They are read one by
one—there is no read-scattering here to speed up the
process. Thereafter, reads use an alternative nibble
table—all of the values from #$A9-FF from our first
table. These values might have been chosen because
they provide the least sparse array when used as in-
dexes.

The encoding is not “6-and-2”, either, it is “6-
and-0” encoding. This requires 344 bytes per sector,
instead of the regular 342 bytes. The decoder over-
writes the addresses $xxAA and $xxAB (the program
supports only page-aligned reads) twice in order to
compensate for the additional bytes. The decoding
is interleaved, so there is no denibbilisation pass.

The “6-and-0” encoding works by using the six-
bit nibble as an alternating index into one of the
arrays of six-bit or two-bit values. The code is both
much faster (no fetching of the two-bit array) and
much smaller (two-thirds of the size) than the one
described in Race Conditions,(§7.10.16) but the de-
coding tables occupy 1.5kb of memory. The mem-
ory layout might have been chosen to avoid a timing

60

penalty due to page-crossing accesses. However, the
penalty has no effect on the performance of the rou-
tine because the code must still spend time waiting
for the bytes to arrive from disk. Therefore, the
tables could have been combined into a 512-byte re-
gion instead, which is a closer match to the memory
usage of the routine described in Race Conditions.

A Spiradisc-protected disk uses four sectors per
track, but since the track stepping is quartered, the
data density is equivalent to a single 16-sector track.
Each sector has a unique prologue value to identify
itself. When a read is requested, if a sector can-
not be found on the current track, then the pro-
gram advances the drive head by one quarter-track,
and then attempts the read again. If the read fails
again, then the program retreats the drive head by
one quarter-track, and then attempts the read again.
If the read still fails, then the program retreats the
drive head by another quarter-track, and then at-
tempts the read again. If the read fails at this point,
then the disk is considered to be corrupted.

Given the behaviour of the read request, the
data might not be stored on consecutive quarter-
tracks. Instead, they might zig-zag across a span of
up to three quarter-tracks. This is another deviation
from the idea of spiral tracking. By coincidence, the
movement is very similar to the one in the program
Captain Goodnight and other Brøderbund titles.

Copying a SpiraDisc-protected disk is difficult
because of the potential for cross-talk which would
corrupt the sectors when they are read back. How-
ever, images produced by an E.D.Dċard will work in
emulators, if the copy parameters are set correctly.

When run, the program decodes selected pages
of itself, based on an array of flags, and also re-
encodes those pages after use, to prevent dumping
from memory. The decoding is simply an exclusive-
OR of each byte with the value #$AC, exclusive-
ORed with the index within the page.

At start-up, the program profiles the system:
scanning the slot device space, and records the loca-
tion of devices for which the first 17 bytes are con-
stant (that is, they return the same value when read
more than once), and which do not have eight bytes
that match the first one within those 17 bytes. For
example, Mockingboard has memory-mapped I/O
space in that region, which are mostly zeroes. The
program calculates and stores a checksum for slot
devices which pass this check. The store was sup-
posed to happen only if the checksum did not match
certain values, but the comparison is made against

a copyright string instead of an array of checksums.
The first time around, all values are accepted. Dur-
ing subsequent profiling, the value must match ex-
actly.

The program checks if bank one is writable, af-
ter attempting to write-enable it, and sets a flag
based on the result. The program checksums the
F8 and F0 ROM BIOS codes, watches for particu-
lar checksums, and sets flags based on the result.
The original version of the program (as seen in
1981, used on the program Jawbreaker) actually re-
quired that the ROM BIOS code match particular
checksums—either the original Apple][or the Ap-
ple][+—otherwise the program simply wiped mem-
ory and rebooted. (This prevented protected pro-
grams from running on the Apple][e or the Ap-
ple][c.) The no-doubt numerous compatibility prob-
lems that resulted from this decision led to the final
check being discarded (as seen in 1983, used on the
program Maze Craze Construction Set, but quite
possibly even earlier), though the rest of the profil-
ing remains. However, having even one popular ti-
tle that didn’t work on more modern machines was
probably sufficient to turn publishers entirely off the
use of the program.

The program probes all of memory by writing a
zero to every second byte. However, it skips pages
#0, #2, #4-7, and #$A8-C0, meaning that it writes
data to all slot devices, with unpredictable results.
The program also re-profiles the system upon receiv-
ing each request to read tracks. This re-profiling is
intended to defeat memory dumps that are produced
by NMI cards, and which are then transferred to
another machine, as the second machine might have
different hardware options.

The program also checksums the boot PROM
prior to disk reads, and requires that it matches one
particular checksum—that of the Disk][system—
otherwise the program wipes memory and reboots.
(This prevents protected programs from running on
the Apple][GS.)

Interestingly, despite all of the checks of the envi-
ronment, the program does not protect itself against
tampering, other than using encoded pages. The
memory layout is data on pages #$A8-B1, and code
on pages #$B2-BF. The data pages are very sparse,
leaving plenty of room for a boot tracer to intercept
execution and disable protections.

The program uses a quarter-track stepping al-
gorithm that activates two phases, and then de-
activates only one of them. According to Roland

61

Gustafsson, this stepping technique allows for more
precise positioning of the drive head, but it does not
work on Rana drives. It was for this reason that he
used the reduced-delay technique instead. (§7.11.2.)
The reduced-delay technique is apparently the only
one which works on an Apple][c, as well. Spiradisc
predated the Apple][c by about two years, so it was
just bad luck that an incompatible technique was
chosen.

7.12 Illegal opcodes

The 6502 CPU has 151 documented instructions.
There are quite a few additional instruction encod-
ings for which the results could be considered useful,
if the side-effects (e.g. memory and/or register cor-
ruption, or long execution time) were also accept-
able. In some cases, the instructions were used to
obfuscate the meaning of the code, since they would
not be disassembled correctly. Some of these un-
documented instructions were replaced in the 65C02
CPU with documented instructions with different
behaviors, and without the unfortunate side-effects.
In some cases, the code that used the undocumented
instructions was not affected because the results of
the undocumented instructions were discarded, and
the documented replacement did not introduce es-
pecially unwanted behavior. Note that the instruc-
tions that were not replaced will cause the 65C02
CPU to hang.

The Datasoft version of the program Dig Dug
uses this technique. It begins with an instruction
which used to behave as a two-byte NOP, but which
is now a zero-page STZ instruction. Since the pro-
gram does not make use of the zero-page at that
time, the store has no side-effects. It looks like this
in 6502 mode:

0801 74 ???
2 0802 4C B0 58 JMP $58B0

In 65C02 mode, the same machine code interpreted
differently.

0801 74 4C STZ $4C
2 0803 B0 58 BCS $85D

Beer Run uses this technique, but was unfortu-
nate enough to choose an instruction which was not
defined on the 65C02 CPU, so the program does not
work on a modern machine. The code is run with
the carry set much earlier in the flow, as a side-effect
of executing a routine in the ROM BIOS. It is pos-
sible that the authors were not even aware of the
fact.

051B LDX #$00
2 . . .

051F LDA #$00
4 0521 STA $00

. . .
6 ;FF 00 00

0525 ISC $0000 ,X

which, when executed, does this:

1 INC $0000 ,X
SBC $0000 ,X

X is zero, so $00 is first incremented to #$01, and
then subtracted from A. A is zero before the subtrac-
tion, so it becomes #$FF. The resulting #$FF is used
as a key to decipher some values later.

7.13 CPU bugs(!)
The original 6502 CPU had a bug where an indi-
rect JMP (xxFF) could be directed to an unexpected
location because the MSB will be fetched from ad-
dress xx00 instead of page xx+1. Randamn relies on
this behavior to perform a misdirection, by placing
a dummy value at offset zero in page xx+1, and the
real value at address xx00.

While not a bug, but perhaps an undocumented
feature—the breakpoint bit is always set in the sta-
tus register image that is placed on the stack by the
PHP instruction. Lady Tut relies on this behavior to
derive a decryption key.

There is also a class of alternative behaviours be-
tween the 6502 and the 65C02 CPUs, particularly
regarding the Decimal flag. For example, the fol-
lowing sequence will yield different values between

62

the two CPUs: $1B on a 6502, and $0B on a 65C02.
These days, it would be used as an emulator detec-
tion method. Try it in your favorite emulator to see
what happens.

SED
2 SEC

LDA #$20
4 SBC #$0F

7.14 Magic stack values

One way to obfuscate the code flow is through the
use of indirect transfers of control. Rescue At Rigel
fills the stack entirely with the sequence #$12 #$11
#$10, and then performs an RTI without setting the
stack pointer to a constant value. Of course, it works
reliably.

Since there are only three values in the sequence,
there should be only three cases to consider. If the
stack pointer were #$F6 at the time of executing the
RTI instruction, then this causes the value #$12 and
$1011 to be fetched from $1F7. If the stack pointer
were #$F7 at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1210 to be
fetched from $1F8. If the stack pointer were #$F8
at the time of executing the RTI instruction, then
this causes the value #$10 and $1112 to be fetched
from $1F9. The program has an RTS instruction at
the first and last of those locations. That yields two
more cases to consider. The RTS at $1011 transfers
control to $1112+1. The RTS at $1112 transfers
control to $1210+1. That leaves one more case to
consider. The program has an RTS instruction at
$1113. The RTS at $1113 transfers control to $1211.
So, both $1210 and $1211 are reachable this way.
Both addresses contain a NOP instruction, to allow
the code to fall through to the real entrypoint

Note the phase “there should be.” There is one
special case. The remainder of 256 divided by three
is one. What is in that one byte? It’s the value #$10.
So the first and last byte of the stack page is #$10,

introducing an additional case. If the stack pointer
were #$FD at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1010 to be
fetched from $1FE. The program has an RTS instruc-
tion at $1010. The RTS at $1010 transfers control
to $1112+1. The RTS at $1113 transfers control to
$1211.

That’s not all! We can construct an even longer
chain. If the stack pointer were #$F9 at the time
of executing the RTI instruction, then this causes
the value #$12 and $1011 to be fetched from $1FA.
The RTS at $1011 transfers control to $1112+1, but
the RTS at $1113 causes the stack pointer to wrap
around. The CPU fetches both #$10 values, so the
RTS at $1113 transfers control to $1010+1. The RTS
at $1011 transfers control again to $1112+1. The
RTS at $1113 finally transfers control to $1211.

Championship Lode Runner has a smaller chain.
It uses only two values on the stack: $3FF and $400.
An RTS transfers control to $3FF+1. The program
has an RTS at $400. The RTS at $400 transfers con-
trol to $400+1, the real entrypoint.

7.15 Obfuscation

7.15.1 Anti-disassembly (aka WTF?

This technique is intended to prevent casual read-
ing of the code—that is, static analysis, and specif-
ically targeting linear-sweep disassemblers—by in-
serting dummy opcodes into the stream, and using
branch instructions to pass over them. At the time,
recursive-descent disassembly was not common, so
the technique was extremely effective.

Wings of Fury uses this technique, even for its
system detection. The initial disassembly follows,
with undocumented instructions such as RLA.

9600 ORA (0 ,X)
2 9602 LDY #$10

9604 BPL $9616
4 9606 RLA ($10 ,X)

9608 NOP
6 960A BEQ $95AC

960C NOP
8 960E STY $84

9610 STY $18
10 9612 CLC

9613 CLC

63

12 9614 BNE $961C
9616 CLC

14 9617 CLC
9618 BNE $960B

16 961A SRE ($51) ,Y
961C STY $C009

18 961F STX $20 ,Y
9621 ORA ($10) ,Y

20 9623 CPX $84
9625 STA $C008

22 9628 BEQ $9672
962A LDA $C088 ,X

24 962D ORA ($18) ,Y
962F ORA ($10) ,Y

26 9631 ASL
9632 LDX #$27

28 9634 ASL
9635 ASL

30 9636 LDY #$10
9638 BPL $9630

32 963A BRK
963B JMP $93BD

34 963E TYA
963F STA $400 ,X

36 9642 BNE $964C
9644 BRK

Upon closer examination, we see the branch in-
struction at $9604 is unconditional, because the
value in the Y register is positive. That leads to the
branch at $9618. This branch is also unconditional,
because the value in the Y register is not zero. That
takes us into the middle of an instruction at $960B,
and requires a second round disassembly:

1 ; s t o r e #$64 at $84
960B LDY #$64

3 960D STY $84
; f our dummy i n s t r u c t i o n s

5 960F STY $84
9611 CLC

7 9612 CLC
9613 CLC

9 ; uncond i t i ona l branch
; because Y i s not ze ro

11 9614 BNE $961C
. . .

13 ; switch to a ux i l i a r y memory bank , i f
a v a i l a b l e

961C STY $C009
15 ; s t o r e a l t e r n a t i v e va lue at $84 ($20+#$64=

$84)
961F STX $20 ,Y

17 ;dummy i n s t r u c t i o n
9621 ORA ($10) ,Y

19 ; compare the two va lue s
; w i l l d i f f e r in 64kb environment

21 9623 CPX $84
; switch to main memory bank

23 9625 STA $C008
; branch i f 128kb memory e x i s t s

25 9628 BEQ $9672

; turn o f f the d r i v e
27 962A LDA $C088 ,X

;dummy i n s t r u c t i o n
29 962D ORA ($18) ,Y

;dummy i n s t r u c t i o n masks r e a l i n s t r u c t i o n
31 962F ORA ($10) ,Y

;dummy i n s t r u c t i o n in f i r s t pass
33 ; opcode parameter in second pass

9631 ASL
35 ; l ength o f e r r o r message

9632 LDX #$27
37 ; two dummy i n s t r u c t i o n s

9634 ASL
39 9635 ASL

9636 LDY #$10
41 ; uncond i t i ona l branch

; because Y i s p o s i t i v e
43 9638 BPL $9630

963A BRK
45 963B JMP $93BD

963E TYA
47 963F STA $400 ,X

9642 BNE $964C
49 9644 BRK

A third round disassembly:

1 ; uncond i t i ona l branch
; because Y i s p o s i t i v e

3 9630 BPL $963C
. . .

5 ; message text
963C LDA $9893 ,X

7 ; wr i t e to the s c r e en
963F STA $400 ,X

9 ; uncond i t i ona l branch
; because A i s not zero

11 9642 BNE $964C

The obfuscated code only gets worse from there,
but the intention is clear already

7.15.2 Self-modifying code

As the name implies, this technique relies on the
ability of code to modify itself at runtime, and to
have the modified version executed. A common use
of the technique is to improve performance by up-
dating an address with a loop during a memory copy,
for example. However, from the point of view of
copy-protection, the most common use is to change
the code flow, or to act as a light encoding layer.
Self-modifying code can be used to interfere with de-
buggers, because a breakpoint that is placed on the
modified instruction might be overwritten directly,
thus removing it, and resulting in uncontrolled ex-
ecution; or turned into an entirely unrelated (and

64

possibly meaningless or even harmful) instruction,
with unpredictable results

Aquatron hides its protection check this way.
The initial disassembly looks like this, complete with
undocumented instructions such as ISB:

1 9600 DEC $9603
9603 ISB $9603

3 9606 LDA $9628
9609 EOR #$C9

5 960B BNE $960E
960D JSR $288D

7 9610 STX $18 ,Y
9612 BNE $9615

9 9614 JMP $29A0
9617 TYA

11 9618 BCC $961B
961A JSR $59

13 961D STX $99 ,Y
961F BRK

15 9620 STX $C8 ,Y
9622 BNE $9617

17 9624 TYA
9625 BPL $9628

19 9627 JMP $2960

65

Upon closer examination, we see references to
instructions at “hidden” offsets, and of course, the
direct modification of the instruction at $9603.

Second round disassembly:

1 9600 DEC $9603
;−> INC $9603

3 ; undo s e l f −mod i f i c a t i on and cont inue
9603 ISB $9603

5 9606 LDA $9628
9609 EOR #$C9

7 ; uncond i t i ona l branch
; because A i s not ze ro

9 960B BNE $960E
960D .BYTE $20

11 ; r ep l a c e i n s t r u c t i o n below
960E STA $9628

13 9611 CLC
; uncond i t i ona l branch

15 ; because A i s not zero
9612 BNE $9615

17 9614 .BYTE $4C
9615 LDY #$29

19 9617 TYA
9618 BCC $961B

21 961A .BYTE $20
; decode and s t o r e

23 961B EOR $9600 ,Y
961E STA $9600 ,Y

25 9621 INY
9622 BNE $9617

27 9624 TYA
; uncond i t i ona l branch

29 ; because Y i s p o s i t i v e
9625 BPL $9628

31 9627 .BYTE $4C
; s e l f −modi f i ed by $960E to $A9 on f i r s t pass

33 ; r e s t o r ed to $60 on second pass
9628 RTS

35 ; decoded by $961B−9620 on f i r s t pass
; re−encoded on second pass

37 9629 .BYTE $29

Now we can see the decryption routine. It de-
codes the bytes at $9629-96FF, which contained a
check for a sector with special format. If the checked
passes, then the routine at $9600 is run again, which
reverses the changes that had been made — the bytes
at $9629-96FF are encoded again, and the routine
exits via the RTS instruction at $9628.

7.15.3 Self-overwriting code

When self-modification is taken to the extreme, the
result is self-overwriting code. There, the RWTS
routine reads sector data over itself, in order to
change the execution behavior, and potentially re-
move user-defined modifications such as breakpoints
or detours. LifeSaver uses this technique. The

loader enters a loop which has no apparent exit con-
dition. Instead, the last sector to be read from disk
contains an identical copy of the loader code, except
for the last instruction which branches to a new lo-
cation upon completion. When combined with a
critically timing-dependent technique, such as read-
ing a sector while the head is moving, it becomes
extremely difficult to defeat.

7.15.4 Encryption and compression

Encryption (or, more correctly, enciphering) of code
was a popular technique, but the keys were always
very weak. The enciphering usually consisted of an
exclusive-OR of the byte with a fixed key. In some
cases, the key was a rolling value taken from the
byte just deciphered. In some rarer cases, multiple
keys were used

Goonies uses a rotate operation. However,
since the 6502 CPU does not have a plain rotate
instruction—only rotate with carry — the program
must set the carry bit correctly prior to the opera-
tion. The program does it this way:

1 ; save value
0405 PHA

3 ; ex t r a c t car ry b i t
0406 LSR

5 ; r e s t o r e va lue
0407 PLA

7 ; r o t a t e with car ry
0408 ROR

Compression of graphics was necessary to re-
duce the size of the data on disk, and to decrease
load times, since the reduced disk access more than
made up for the time spent to decompress the graph-
ics. The most common compression technique was
Run-Length Encoding (RLE), using a stream de-
rived from every second horizontal byte, or verti-
cal columns. More advanced compression, such as
something based on Lempel-Ziv, was generally con-
sidered to be too slow to use.

Perhaps based on the assumption that LZ-based
compression was too slow, compression of code
seems to have been entirely absent until recently—all

66

of my releases use my decompressor for aPLib54, for
an almost exact or even slightly reduced load time,
which shows that the previous assumption was quite
wrong. Others have had success with my decompres-
sor for LZ455 when used for graphics. A more recent
LZ4-based project is also showing promise.56

7.16 Virtual machines

One of the most powerful forms of obfuscation is
the virtual machine. Instead of readable assembly
language that we can recognise, the virtual machine
code replaces instructions with bytes whose meaning
might depend on the parameters that follow them.
Electronic Arts were famous for their use of pseudo-
code (p-code) to hide the protection routines in pro-
grams such as Archon and Last Gladiator. That vir-
tual machine was even ported to the Commodore 64
platform.

Last Gladiator uses a top-level virtual machine
that has 17 instructions. The instructions look like
this:

00 JMP
2 01 CALL NATIVE

02 BEQ
4 03 LDA IMM

04 LDA ABSOLUTE
6 05 JSR

06 STA ABSOLUTE
8 07 SBC IMM

08 JMP NATIVE
10 09 RTS

0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
12 0B ASL

0C INC ABSOLUTE
14 0D ADC ABSOLUTE

0E XOR ABSOLUTE
16 0F BNE

10 SBC ABSOLUTE
18 11 MOVS

It has the ability to transfer control into 6502
routines, via the instructions that I named “call na-
tive” and “jmp native.” The parameters to the in-
structions were XORed with different values to make
the disassembly even more difficult. Since the vir-
tual machine could read arbitrary memory, it was
used to access the soft-switches, in order to turn the
drive on and off. Once past the first virtual ma-
chine, the program ran a second one. The second

virtual machine is interesting for one particular rea-
son. While it looks identical to the first one, it’s not
exactly the same. For one thing, there are only 13 in-
structions. For another, two of them have swapped
places:
0A INC ABSOLUTE

2 0B nothing
0C LDA ABSOLUTE, A ; p−code A r e g i s t e r

These two engines were not the only ones that
Electronic Arts used, either. Hard Hat Mack uses a
version that had twelve instructions.

1 00 JMP
01 CALL NATIVE

3 02 BEQ
03 LDA IMM

5 04 LDA ABSOLUTE
05 JSR

7 06 STA ABSOLUTE
07 SBC IMM

9 08 JMP NATIVE
09 RTS

11 0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
0B ASL

Following that virtual machine was yet another
variation. This one has only eleven instructions.
Nine of the instructions are identical in value to
the previous virtual machine. The differences are
that “ASL” is missing, and the “LDA ABSOLUTE, A”
instruction is now “INC ABSOLUTE.”

However, in between those two virtual machines
was an entirely different virtual machine. It is a
stack-based engine that uses function pointers in-
stead of byte-code. It looks like this, if you’ll forgive
handler address in place of names I wasn’t able to
identify.
9DF2 .WORD xsave_retpc

2 9DF4 .WORD xpush_imm
9DF6 .WORD $95FF

4 9DF8 .WORD xpush_imm
9DFA .WORD $A600

6 9DFC .WORD xchkstk_vars
9DFE .WORD xbeq_rel

8 9E00 .WORD 4
9E02 .WORD xdo_copy_prot

10 9E04 .WORD xjmp_retpc

54http://pferrie.host22.com/misc/aplibunp.zip
55http://pferrie.host22.com/misc/lz4unp.zip
56https://github.com/fadden/fhpack

67

This virtual machine is Forth. Amnesia, includ-
ing its copy-protection (What You Know style), was
written entirely in Forth. The Toy Shop used an-
other virtual machine, which combined byte-code
and function pointers, depending on which function
was called, and all mixed freely with native code.
Its identity is not known.

Of course, the most famous of all virtual ma-
chines is the one inside Pascal, an ancestor of Del-
phi that was very widely used in the eighties. Wiz-
ardry is perhaps the most well-known Pascal pro-
gram on the Apple][system, and the Pascal virtual
machine made it a simple task to port the program
to other platforms. The advantage of a virtual ma-
chine is that only the interpreter must be ported,
rather than the entire system. Since the language
is much higher-level than assembly language, it also
allows for a faster development time. It also makes
de-protecting a program much harder

7.17 ROM regions
The Apple][ROM BIOS is full of little routines
whose intention is clear, but whose meaning can be
changed depending on the context. That leads into
an interesting area of obfuscation and indirection.
For our first example, there is a routine to save the
register contents. It is used by the ROM BIOS code
when a breakpoint occurs. It has the side-effect of
returning the status register in the A register. That
allows a program to replace the instruction pair PHP;
PLA with the instruction JSR $FF4A for the same pri-
mary effect (it has the side-effect of altering several
memory locations), but one byte larger.

For our second example, there is a routine to
clear the primary text screen. Since the Apple][
has a text and graphics mode that share the same
memory region, there is one routine for clearing the
screen while in text mode, and another for clear-
ing the screen while in graphics mode. However, it
is possible to use the graphics routine to clear the
screen even while in text mode. That allows a pro-
gram to replace JSR $FC58 with JSR $F832 for the
same major effect. (It has the side-effect of altering
several memory locations.)

For our third example, there is a routine to com-
pare two regions of memory. It is used primarily to
ensure that memory is functioning correctly. How-
ever, it can also be used to detect alterations that as
those produced by a user attempting to patch a pro-
gram. All that is required is to set the parameters
correctly, like this:

LDA #>beghi
2 STA $3D

LDA #<beglo
4 STA $3C

LDA #>endhi
6 STA $3F

LDA #<endlo
8 STA $3E

LDA #>cmphi
10 STA $43

LDA #<cmplo
12 STA $42

JSR $FE36

For our fourth example, there is an RTS instruc-
tion at a known location. A jump to this instruc-
tion will simply return. It is usually used to deter-
mine the value of the Program Counter. However,
it can just as easily be used to hide a transfer of
control, taking into account that the destination ad-
dress must be one less than the true value, like this
to jump to $200:

1 LDA #$01
PHA

3 LDA #$FF
PHA

5 JMP $FF58

And so on. The first three examples are taken
from Lady Tut, though in the third example, the
parameters are also set in an obfuscated way, us-
ing shifts, increments, and constants. The fourth is
taken from Mr. Do!.

7.18 Sensitive memory locations
There are certain regions in memory, in which
modifications can be made which will cause inten-
tional side-effects. The side-effects include code-
destruction when viewed, or automatic execution in
response to any typed input, among other things.
The zero-page is a rich source of targets, because it
is shared by so many things.

The most commonly altered regions follow.

7.18.1 Scroll window

When the monitor is active, the scrollable region
of the screen can be adjusted to allow “fixed” rows
and/or columns. The four locations, left ($20),
width ($21), top ($22), and bottom ($23) can also
be adjusted. A program can protect itself from de-
bugging attempts by altering these values to make a

68

very small window, or even to cause overlapping re-
gions that will cause memory corruption if scrolling
occurs.

7.18.2 I/O vectors

There are two I/O vectors in the Apple][, one
for output—CSW ($36-37), and one for input—KSW
($38-39). CSW is invoked whenever the ROM
BIOS routine COUT is called to display text. KSW
is invoked whenever the ROM BIOS routine RD-
KEY is called to wait for user input. Both of these
vectors are hooked by DOS in order to intercept
commands that are typed at the prompt. Both of
these vectors are often forcibly restored to their de-
fault values to unhook debuggers. They are some-
times altered to point to disk access routines, to pre-
vent user interaction. Championship Lode Runner
uses the hooks for disk access routines in order to
load the level data from the disk.

7.18.3 Monitor

The monitor prompt allows a user to view and al-
ter memory, and execute subroutines. It uses sev-
eral zero-page addresses in order to do this. Any-
thing that is stored in those locations ($31, $34-35,
$3A-43, $45-49) will be lost when the monitor be-
comes active. In addition, the monitor uses the
ROM BIOS routine RDKEY. RDKEY provides a
pseudo-random number generator, by measuring the
time between keypresses. It stores that time in
$4E-4F.

Falcons uses address $31 to hold the rolling
checksum, and checks if $47 is constant after ini-
tialising it.

Classmate uses addresses $31 and $4E to hold
two of the data field prologue bytes.

7.18.4 The “LOCK” mystery

There is a special memory location in Applesoft
($D6) which is named the “AppleSoft Mystery Pa-

69

rameter” in What’s Where In The Apple. It is also
named “LOCK” in the Applesoft Internals disassem-
bly, which gives a better idea of its purpose. When
set to #$80, all Applesoft commands are interpreted
as meaning “RUN.” This prevents any user inter-
action at the Applesoft prompt. Tycoon uses this
technique.

7.18.5 Stack

The stack is a single 256-bytes page ($100-1FF) in
the Apple][. Since the standard Apple][environ-
ment does not have any source of interrupts, the
stack can be considered to be a well-defined mem-
ory region. This means that code and data can be
placed on the stack, and run from there, without re-
gard to the value of the stack pointer, and modifica-
tions will not occur unexpectedly. (The effect on the
stack of subroutine calling is an expected modifica-
tion.) If an interrupt occurred, then the CPU would
save the program counter and status register on the
stack, thus corrupting the code or data that existed
below the current stack pointer. (The corruption
can even be above the stack pointer, if the stack
pointer value is low enough that it wraps around!)
Correspondingly, any user interaction that occurs,
such as breaking to the prompt, will cause corrup-
tion of the code or data that exist below the current
stack pointer. Choplifter uses this technique.

7.18.6 Stack pointer

Since the standard Apple][environment does not
have any source of interrupts, the stack pointer
can be considered to be a register with well-defined
value. This means that its value remains under pro-
gram control at all times and that it can even be
used as a general-purpose register, provided that
the effect on the stack pointer of subroutine call-
ing is expected by the program. Beer Run uses this
technique.

LifeSaver also uses this technique for the pur-
pose of obfuscating a transfer of control—the pro-
gram checksums the pages of memory that were read
in, and then uses the result as the new stack pointer,
just prior to executing a “return from subroutine” in-
struction. Any alteration to the data, such as the
insertion of breakpoints or detours, results in a dif-
ferent checksum and unpredictable behavior.

7.18.7 Input buffer

The input buffer is a single 256-bytes page
($200-2FF) in the Apple][. Code and data can be
placed in the input buffer, and run from there. How-
ever, anything that the user types at the prompt,
and which is routed through the ROM BIOS routine
GETLN ($FD6A), will be written to the input buffer.
Any user interaction that occurs, such as breaking
to the prompt, will cause corruption of the code in
the input buffer. Karateka uses this technique.

7.18.8 Primary text screen

The primary text screen is a set of four 256-bytes
pages ($400-7FF) in the Apple][. Code and data
can be placed in the text screen memory, and run
from there. The visible screen was usually switched
to a blank graphics screen prior to that occurring, to
avoid visibly displaying garbage, and perhaps caus-
ing the user to think that the program was malfunc-
tioning. Obviously, any user interaction that occurs
through the ROM BIOS routines, such as break-
ing to the prompt and typing commands, will cause
corruption of the code in the text screen. Joust uses
this technique to hold essential data.

7.18.9 Non-maskable interrupt vector

When a non-maskable interrupt (NMI) occurs,
the Apple][saves the status register and pro-
gram counter onto the stack, reads the vector at
$FFFA-FFFB, and then starts executing from the
specified address. The ROM BIOS handler imme-
diately transfers control to the code at $3FB-3FD,
which is usually a jump instruction to the complete
NMI handler. For programs that were very heav-
ily protected, such that inserting breakpoints was
difficult because of hooked CSW and KSW vectors,
for example, one alternative was to “glitch” the sys-
tem by using a NMI card to force a NMI to occur.
However, that technique required direct access to
memory in order to install the jump instruction at
$3FB-3FD, since the standard ROM BIOS does not
place one there

On a 64kb Apple][, the ROM BIOS could be
copied into banked memory and made writable. The
BIOS NMI vector could then be changed directly,
potentially bypassing the user-defined NMI vector
completely.

70

7.18.10 Reset vector

On a cold start, and whenever the user presses Ctrl-
Reset, the Apple][reads the vector at $FFFC-FFFD,
and then starts executing from the specified address.
If the Apple][is configured with an Autostart ROM,
then the warm-start vector at $3F2-3F3 is used, if
the “power-up” byte at $3F4 matched the exclusive-
OR of #$A5 with the value at $3F357. The values at
$3F2-3F4 are always writable, allowing a program
to protect itself against a user pressing Ctrl-Reset in
order to gain access to the monitor prompt, and then
saving the contents of memory. The typical pro-
tected program response to Ctrl-Reset was to erase
all of memory and then reboot.

On a 64kb Apple][, the ROM can be copied into
banked memory and made writable. When the user
presses Ctrl-Reset on an Apple][+, the ROM BIOS
is not banked in first, meaning that the cold-start re-
set vector can be changed directly, and will be used,
potentially bypassing the warm-start reset vector
completely. On an Apple][e or later, the ROM BIOS
is banked in first, meaning that the modified BIOS
cold-start reset vector will never be executed, and so
the warm-start reset vector cannot be overridden.

7.18.11 Interrupt request vector

Despite not having a source of interrupts in the de-
fault configuration, the Apple][did offer support for
handling them. When an interrupt request (IRQ)
occurs, the Apple][saves the status register and
program counter onto the stack, reads the vector
at $FFFE-FFFF, and then starts executing from the
specified address. However, there is also a special
case IRQ, which is triggered by the BRK instruction.
This instruction is a single-byte breakpoint instruc-
tion, and is intended for debugging purposes. The
ROM BIOS handler checks the source of the inter-
rupt, and transfers control to the vector at $3FE-3FF
if the source was an external interrupt. On the Au-
tostart ROM, the ROM BIOS handler transfers con-
trol to the vector at $3F0-3F1 if the source was a
breakpoint. (Pre-Autostart ROMs simply dumped
the register values to the screen, and then dropped
to the monitor prompt instead.) The values at
$3F0-3F1, and $3FE-3FF are always writable, allow-
ing a program to protect itself against a user insert-
ing breakpoints in order to break when execution

reaches the specified address. The typical protected
program response to breakpoints was to erase all
of memory and then reboot. An alternative protec-
tion is to point $3F0-3F1 to another BRK instruction,
to produce an infinite loop and hang the machine.
Bank Street Writer III uses this technique.

On a 64kb Apple][, the ROM BIOS can be
copied into banked memory and made writable. The
BIOS IRQ vector can then be changed directly, po-
tentially bypassing the user-defined IRQ vector com-
pletely.

7.19 Catalog tricks

7.19.1 Control-“Break”

On a regular DOS disk, there is a sector called the
Volume Table Of Contents (VTOC), which describes
the starting location (track and sector) of the cata-
log, among other things. The catalog sectors contain
the list on the disk of files which are accessible by
DOS. For a file-based program, apart from the DOS
and the catalog-related structures, all other content
is accessible through the files listed in the catalog.
DOS “knows” the track which holds the VTOC, since
the track number (usually #$11) is hard-coded in
DOS itself, and sector zero is assumed to be the one
that holds the VTOC.

Since the files are listable, they can also be
loaded from the original disk, and then saved to a
copy of the disk. One way to prevent that is to insert
control-characters in the filenames. Since control-
characters are not visible from the DOS prompt, any
attempt to load a file, using the name exactly as it
appears, will fail.

Classmate uses this technique. It is also possi-
ble to embed backspace characters into the filename.
Filenames with backspace characters in them cannot
be loaded from the prompt. Instead, a Basic pro-
gram must be written with printable characters as
placeholders, and then the memory image must be
altered to replace them with backspace characters

7.19.2 Now you see it

Since the VTOC also carries the sector of the cat-
alog, it can be altered to point to another location
within the track that holds the VTOC. That causes

57This is true only when the full warm-start vector is not #$00 #$E0 #$45 ($E000 and #$45). If the vector is $E000 and #$45,
then the cold-start handler will change it to $E003, and resume execution from $E000. This behavior could have been used as
an indirect transfer of control on the Apple][+, by jumping back to the cold-start handler, which would look like an infinite
loop, but it would actually resume execution from $E003.

71

the disk to display a “fake” catalog, while allowing a
program to access the real catalog sectors directly.

The Toy Shop uses this technique to show the
program title, copyright, and author credits.

7.19.3 Now you don’t

Since DOS carries a hard-coded track number for the
VTOC, it is easy to patch DOS to look at a different
track entirely. The original default track can then
be used for data. Any attempt to show the catalog
from a regular DOS disk will display garbage.

Ali Baba uses this technique, by moving the en-
tire catalog track to track five.

7.20 Basic tricks

7.20.1 Line linking

Circularly

In Basic on the Apple][, each line contains a refer-
ence to the next line to list. As such, several inter-
esting effects are possible. For example, the listing
can be made circular, by pointing to a previous line,
causing an infinite loop of listing. The simplest ex-
ample of that looks like this:
801:01 08 00 00 3A 00 00 00

This program contains one line whose line num-
ber is zero, and whose content is a single “:”. An
attempt to list this program will show an infinite
number of “0 :” lines. However it can be executed
without issue.

Missing

The listing can be forced to skip lines, by pointing
to a line that appears after the next line, like this:
801:10 08 00 00 3A 00 10 08 01 00 BA 22
80D:31 22 00 16 08 02 00 3A 00 00 00

Listing the program will show two lines:

1 0 :
2 :

However, there is a second line (numbered “one”)
which contains a PRINT statement. Running the
program will display the text in line one.

Out-of-order

The listing can list lines in an order that does not
match the execution, for example, backwards:

801:13 08 03 00 BA 22 30 22 00 1C 08 01 00 BA
22
810:31 22 00 0A 08 03 00 BA 22 32 22 00 00 00

This program contains three lines, numbered
from zero to two. The list will show the second
and third lines in reverse order. The illusion is com-
pleted by altering the line number of the first line
to a value larger than the other lines. However, the
execution of the first line first cannot be altered in
this way.

Out-of-bounds

The listing can even be forced to fetch from arbi-
trary memory, such as the graphics screen or the
memory-mapped I/O space:
801:55 C0 00 00 3A 00 00 00

This program contains a single line whose line
number is zero, and whose content is a single “:”. An
attempt to list this program will cause the second
text screen to be displayed instead, and the machine
will appear to crash. Further misdirection is possi-
ble by placing an entirely different program at an
alternative location, which will be listed instead

Imagine the feeling when the drive light turns
itself on while the program is being listed!

It might even be possible to create a program
with lines that touch the memory-mapped I/O
space, and activate or deactivate a stepper-motor
phase. If those lines were listed in a specific order,
then the drive could be enticed to move to a differ-
ent track. That track could lie about its position on
the disk, but carry alternative content to the proper
track, resulting in perhaps subtly different behavior.
Are we having fun yet?

7.20.2 Start address

The first line of code to execute can be altered
dynamically at runtime, by a “POKE 103, <low
addr>” and/or “POKE 104, <high addr>”, followed
by a “RUN” command. Math Blaster uses this tech-
nique.

7.20.3 Line address

Normally, the execution will generally proceed lin-
early through the program (excluding instructions
that legally transfer control, such as subroutine calls
and loops), regardless of the references to individual
lines. However, the next line (technically, the next

72

token) to execute can be altered dynamically at run-
time, by a “POKE 184, <low addr>”. The first value
at the new location must be a ’:’ character. For
example, this program:

0 POKE 184 ,14 : END : PRINT " !"

will skip the “END” token and print the ’ !’ instead. It
is also possible to alter the high address by a “POKE
185, <high address>” as well, but it requires that
the second POKE is placed at the new location,
which is determined by the new value of the high
address and the old value of the low address. It
cannot be placed immediately after the address of
the first POKE, because that location will not be
accessed anymore.

7.20.4 “REM crash”

801:0E 08 00 00 B2 0D 04 50 52 23 36 0D 00 00
00

This program contains one line, which looks like
the following, where the “^” character stands for the
Control key.

1 0 REM̂ M̂ DPR#6 M̂

When listed with DOS active, it will trigger a
reboot. It works because the same I/O routine is
used for displaying the text as for typing commands
from the keyboard. Zardax uses this technique.

7.20.5 Self-modification

A program can even modify itself dynamically at
runtime. For example, this program will display
“2” instead of “1”. The address of the POKE cor-
responds to the location of the text in memory.

1 0 POKE 2064 ,50 : PRINT "1"

A program can also extend its code dynamically
at runtime:

1 0 DATA 130 ,58
1 FOR I=0 TO 1 : READ X : POKE 2086+I ,X :

A “FOR” loop must be terminated by a “NEXT”
token, in order to be legal code. Notice that the
program does not contain a “NEXT” token, as ex-
pected. Instead, the values in the DATA line supply
the “NEXT” token and a subsequent “:”. The inclu-
sion of a “:” allows extending the line further, simply
by adding more values to the “DATA” line and al-
tering the corresponding address of the “POKE”.

By using this technique, even entirely new lines
can be created.

7.21 Rastan

Rastan is mentioned here only because it is a title
for an Apple][system (okay, the IIGS) that carried
the means to bypass its own copy-protection! The
program contained two copy-protection techniques.
One was a disk verification check, which executed
shortly after inserting the second disk. The other
was a checksum routine which performed part of
the calculation between each graphics frame, until
it formed the complete value. If the match failed,
only then would it display a message. It means that
the game would run for a little while before failing,
making it extremely difficult to determine where the
check was performed.

7.21.1 The Rastan backdoor

In order to avoid waiting for the protection check
every time a new version of the code was built, the
author58 inserted a “backdoor” routine which exe-
cuted before the first protection check could run.
The backdoor routine had the ability to disable both
protection checks in memory, as well as to add new
functionality, such as invincibility and level warp-
ing. And where was this backdoor routine located?
Inside the highscore file!

Yes. The highscore file had a special format,
whereby code could be placed beginning at the third
byte of the file. As long as the checksum of the file
was valid (an exclusive-OR of every byte of the file
yielded a zero), the code would be executed.

Here is the dispatcher code in Rastan:

. A16
2 ; checksum data

2000D JSR $21216
4 ; note t h i s address

20010 JSR $2D1C2

58https://twitter.com/JBrooksBSI

73

Here is the checksum routine:
1 . A16

; source address
3 21216 TXA

; taken i f no h ighsco r e f i l e
5 21217 BEQ $21240

; l ength o f data
7 21219 LDA $0 ,X

2121D TAY
9 2121E SEP #$20

.A8
11 21220 PHX

; checksum seed
13 21221 LDA #0

; checksum data
15 21223 EOR $0 ,X

21227 INX
17 21228 DEY

21229 BNE $21223
19 2122B PLX

2122C REP #$30
21 . A16

2122E AND #$FF
23 ; taken i f bad checksum , no copy

21231 BNE $21240
25 ; l ength o f data

21233 LDA $0 ,X
27 21237 DEC

21238 LDY #$D1C0
29 ; copy to $2D1C0

2123B MVN #2, #0
31 2123E PHK

2123F PLB
33 21240 RTS

We can see that the data are copied to $2D1C0,
the first word is the length of the data, and the first
byte after the length (so $2D1C2) is executed directly
in 16-bit mode. By default, the file carried an im-
mediate return instruction, but it could have been
anything, including this:

1 ; always pass p r o t e c t i on
; (BRA $+$0F)

3 2D1C2 LDA #$0D80
2D1C5 STA $22004

5 ; always pass checksum
; (BRA $+$19)

7 2D1C8 LDA #$1780
2D1CB STA $3CAD0

9 2D1CE RTS

7.22 Conclusion
There were many tricks used to protect programs on
the Apple][, and what is listed here is not even all
of them. Copy-protection and cracking were part
of a never-ending cycle of invention and advances

on both sides. As the protectors came to under-
stand the hardware more and more, they were able
to develop techniques like delayed fetch, or consec-
utive quarter-tracks. The crackers came up with
NMI cards, and the mighty E.D.D. In response, the
protectors hooked the NMI vector and exploited a
vulnerability in E.D.D.’s read routine. (This is my
absolute favorite technique.) The crackers just boot-
traced the whole thing.

We can only stand and admire the ingenuity and
inventiveness of the protectors like Roland Gustafs-
son or John Brooks. They were helped by the
openness of the Apple][platform and especially
its disk system. Even today, we see some of the
same styles of protections—anti-disassembly, self-
modifying code, compression, and, of course, anti-
debugging.

The cycle really is never-ending.

7.23 Acknowledgements

Thanks to William F. Luebbert for What’s Where
In The Apple, and Don Worth and Pieter Lechner
for Beneath Apple DOS. Both books have been on
my bookshelf since 1983, and were consulted very
often while writing this paper.

Thanks to reviewers 4am, Olivier Guinart, and
John Brooks, for their invaluable input

74

75

8 Reverse Engineering the Tytera MD380
by Travis Goodspeed KK4VCZ,

with kind thanks to DD4CR and W7PCH.

The following is an adventure of reverse engi-
neering the Tytera MD380, a digital hand-held ra-
dio that can be had for barely more than a hundred
bucks. In this article, I explain how to read and
write the radio’s configuration over USB, and how
to break the readout protection on its firmware, so
that you fine readers can write your own strange and
clever software for this nifty gizmo. I also present
patches to promiscuously receive audio from un-
known talkgroups, creating the first hardware scan-
ner for DMR. Far more importantly, these notes
will be handy when you attempt to reverse engineer
something similar on your own.

This article does not go into the security prob-
lems of the DMR protocol, but those are sufficiently

similar to P25 that I’ll just refer you to Why (Spe-
cial Agent) Johnny (Still) Can’t Encrypt by Sandy
Clark and Friends.59

8.1 Hardware Overview

Speaker

Microphone

SP- D- SP+

D+ MIC

The MD380 is a hand-held digital voice radio
that uses either analog FM or Digital Mobile Radio
(DMR). It is very similar to other DMR radios, such
as the CS700 and CS750 from Connect Systems.60

DMR is a trunked radio protocol using two-slot
TDMA, so a single repeater tower can be used by
one user in Slot 1 while another user is having a
completely different conversation on Slot 2. Just
like GSM, the tower coordinates which radio should
transmit when.

The CPU of this radio is an STM32F405 from
STMicroelectronics. This contains a Cortex M4, so
all instructions are Thumb and all function point-
ers are odd. The LQFP100 package of this chip
is used. It has a megabyte of Flash and 192 kilo-
bytes of RAM. The STM32 has both JTAG and a
ROM bootloader, but both of these are protected
by a Readout Device Protection (RDP) feature. In
Section 8.8, I’ll show you how to bypass these pro-
tections and jailbreak your radio.

There is also a radio baseband chip, the
HR C5000. At first I was reconstructing the pinout
of this chip from the CS700 Service Manual, but the
full documentation can be had from DocIn, a Chi-
nese PDF sharing website.

Aside from a bunch of support components that
we can take for granted, there is an SPI Flash chip
for storing the codeplug. “Codeplug” is a Motorola
term for the radio settings, such as frequencies, con-
tacts, and talk groups; I use the term here to distin-
guish the radio configuration in SPI Flash from the

59unzip pocorgtfo10.pdf p25sec.pdf #from Proceedings of the 20th Usenix Security Symposium in 2011
60The folks at Connect Systems are nice and neighborly, so please buy a radio from them.

76

code and data in CPU Flash.

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

60
59

58
57

56
55

54
53

52
51

50
49

48
47

46
45

44
43

42
41

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

19
20

HRC_5000

HPVCC

HPOUT

HPGND

CDC_VREF

MIC2_N

MIC2_P

MIC1_N

MIC1_P

CDC_AVCC

LINEOUT

MICBIAS

PLL_AVCC

PLL_AVSS

XTALI

CKOut

MCLK

ADCDAT

BCLK

LRCK

DACDAT

DVCC

RF_TX_EN

RF_RX_EN

U_SCLK

U_CS

U_SDI

DVDD

U_SDO

RF_RX_INTER

RF_TX_INTER

SYS_INTER

TIME_SLOT_INTER

NULL

PWD

RESETn

TESTMODE

DVSS

C_SDO

C_SCLK

C_CS

M
cB

S
P_

R
xD

M
cB

SP
_T

xD

M
cB

S
P_

C
L
K
R

M
cB

SP
_F

SX

M
cB

S
P
_C

L
K
X

M
cB

SP
_F

SR

P
K
T
_R

X
_W

A
K
E

R
T
S

T
X
_R

Q
ST

T
X
_R

D
Y

S
T
D
B
Y
_E

N
A
B
L
E

D
V
D
D

V
_S

D
I

V
_S

D
O

V
_S

C
L
K

V
_C

S

C
_S

D
I

N
U
L
L

D
V
SS

D
V
C
C

D
C
D

C
_S

W

D
C
D

C
_V

D
D
50

D
C
D
C
_V

SS

D
C
D
C
_V

D
D
12

D
A
C
_I

V
O
U
T

D
A
C
_A

V
D
D
33

D
A
C
_A

V
SS

33

D
A
C
_Q

V
O
U
T

A
V
C
_V

G
B
_I

A
D
C
_I

V
IN

N

A
D
C
_I

V
IN

P

A
D
C
_A

V
D
D
33

_I

A
D
C
_A

V
D
D

A
D
C
_A

G
N
D

A
D
C
_A

V
D
D
33

_Q

A
D
C
_Q

V
IN

P

A
D
C
_Q

V
IN

N

A
D
C
_V

G
B
_Q

N
U
L
L

A
D
C
_A

G
N
D

8.2 A Partial Dump

From lsusb -v on Linux, we can see that the de-
vice implements USB DFU, most likely as a fork of
some STMicro example code. The MD380 appears
as an STMicro DFU device with storage for Internal
Flash and SPI Flash with a VID:PID of 0483:df11.

1 iMac% dfu−u t i l − l i s t
Found DFU: [0 4 8 3 : df11]

3 devnum=0, c f g =1, i n t f =0, a l t =0,
name="@Internal Flash

5 /0 x08000000 /03∗016Kg"
Found DFU: [0 4 8 3 : df11]

7 devnum=0, c f g =1, i n t f =0, a l t =1,
name="@SPI Flash Memory

9 /0 x00000000 /16∗064Kg"

Further, the .rdt codeplug files are SPI Flash
images in the DMU format, which is pretty much
just wrapper with a bare minimum of metadata
around a flat, uncompressed memory image. These
codeplug files contain the radio’s contact list, re-
peater frequencies, and other configuration info.
We’ll get back to this later, as what we really want
to do is dump and patch the firmware.

Unfortunately, dumping memory from the device
by the standard DFU protocol doesn’t seem to yield
useful results, just the same repeating binary string,
regardless of the alternate we choose or the starting
position.

1 iMac% dfu−u t i l −d 0483: df11 −−a l t 1 −s 0 :0 x200000 −U
f i r s t 1 k . bin

F i l t e r on vendor = 0x0483 product = 0xdf11
3 Opening DFU capable USB dev ice . . . ID 0483: df11

Run−time dev ice DFU ver s i on 011a
5 Found DFU: [0 483 : df11] devnum=0, c fg =1, i n t f =0, a l t =1,

name="@SPI Flash Memory /0x00000000 /16∗064Kg"
7 Claiming USB DFU In t e r f a c e . . .

Se t t ing Alternate Se t t ing #1 . . .
9 Determining dev ice s ta tu s : s t a t e = dfuUPLOAD−IDLE

abort ing prev ious incomplete t r a n s f e r
11 Determining dev ice s ta tu s : s t a t e = dfuIDLE , s ta tu s = 0

dfuIDLE , cont inu ing
13 DFU mode dev ice DFU ver s i on 011a

Device returned t r a n s f e r s i z e 1024
15 Limit ing default upload to 2097152 bytes

bytes_per_hash=1024
17 Sta r t ing upload : [####...####] f i n i s h e d !

iMac% hexdump f i r s t 1 k . bin
19 0000000 30 1a 00 20 15 56 00 08 29 54 00 08 2b 54 00 08

0000010 2d 54 00 08 2 f 54 00 08 31 54 00 08 00 00 00 00
21 0000020 00 00 00 00 00 00 00 00 00 00 00 00 33 54 00 08

0000030 35 54 00 08 00 00 00 00 83 30 00 08 37 54 00 08
23 0000040 61 56 00 08 65 56 00 08 69 56 00 08 5b 54 00 08

. . .
25 00003 c0 10 eb 01 60 df f8 34 1a 08 60 df f8 1c 0c 00 78

00003d0 40 28 c0 f0 e6 81 df f8 24 0a 00 68 00 f0 0e f f
27 00003 e0 df e1 df f8 10 1a 09 78 a2 29 0 f d1 df f8 f8 19

00003 f0 09 68 02 29 0a d1 df f8 00 0a 02 21 01 70 df f8
29 . . . [same 1024 bytes repeated]

In this brave new world, where folks break their
bytes on the little side by order of Golbasto Mo-
marem Evlame Gurdilo Shefin Mully Ully Gue,
Tyrant of Lilliput and Eternal Enemy of Big En-
dians and Blefuscu, to break them on the little side,
it’s handy to spot four byte sequences that could be
interrupt handlers. In this case, what we’re looking
at is the first few pointers of an interrupt vector ta-
ble. This means that we are grabbing memory from
the beginning of internal flash at 0x08000000!

Note that the data repeats every kilobyte, and
also that dfu-util is reporting a transfer size of
1,024 bytes. The -t switch will order dfu-util to
dump more than a kilobyte per transfer, but every-
thing after the first transfer remains corrupted.

This is because dfu-util isn’t sending the
proper commands to the radio firmware, and it’s get-
ting the page as a bug rather than through proper
use of the protocol. (There are lots of weird variants
of DFU, created by folks only using DFU with their
own tools and never testing for compatibility with
each other. This variant is particularly weird, but
manageable.)

8.3 Tapping USB with VMWare

Before going further, it was necessary to learn the
radio’s custom dialect of DFU. Since my Total Phase
USB sniffers weren’t nearby, I used VMWare to sniff
the transactions of both the MD380’s firmware up-
dater and codeplug configuration tools.

I did this by changing a few lines of my VMWare
.vmx configuration to dump USB transactions out

77

to vmware.log, which I parsed with ugly regexes in
Python. These are the additions to the .vmx file.

1 monitor = "debug"
usb . ana lyze r . enable = TRUE

3 usb . ana lyze r . maxLine = 8192
mouse . vusb . enable = FALSE

The logs showed that the MD380’s variant of
DFU included non-standard commands. In partic-
ular, the LCD screen would say “PC Program USB
Mode” for the official client applications, but not
for any 3rd party application. Before I could do a
proper read, I had to find the commands that would
enter this programming mode.

DFU normally hides extra commands in the
UPLOAD and DNLOAD commands when the block ad-
dress is less than two. (Hiding them in blocks
0xFFFF and 0xFFFE would make more sense, but if
wishes were horses, then beggars would ride.)

To erase a block, a DFU host sends 0x41 followed
by a little endian address. To set the address pointer
(block 2’s address), the host sends 0x21 followed by
a little endian address.

In addition to those standard commands, the
MD380 also uses a number of two-byte (rather than
five-byte) DNLOAD transactions, none of which exist
in the standard DMU protocol. I observed the fol-
lowing, which I still only partially understand.

Non-Standard DNLOAD Extensions
91 01 Enables programming mode on LCD.
a2 01 Seems to return model number.
a2 02 Sent only by config read.
a2 31 Sent only by firmware update.
a2 03 Sent by both.
a2 04 Sent only by config read.
a2 07 Sent by both.
91 31 Sent only by firmware update.
91 05 Reboots, exiting programming mode.

8.4 Custom Codeplug Client

Once I knew the extra commands, I built a custom
DFU client that would send them to read and write
codeplug memory. With a little luck, this might
have given me control of firmware, but as you’ll see,
it only got me half way.

Because I’m familiar with the code from a prior
target, I forked the DFU client from an old version
of Michael Ossmann’s Ubertooth project.61

Sure enough, changing the VID and PID of the
ubertooth-dfu script was enough to start dumping
memory, but just like dfu-util, the result was a
repeating sequence of the first block’s contents. Be-
cause the block size was 256 bytes, I received only
the first 0x100 bytes repeated.

Adding support for the non-standard commands
in the same order as the official software, I got a
copy of the complete 256K codeplug from SPI Flash
instead of the beginning of Internal Flash. Hooray!

To upload a codeplug back into the radio, I mod-
ified the download() function to enable program-
ming mode and properly wait for the state to return
to dfuDNLOAD_IDLE before sending each block.

This was enough to write my own codeplug from
one radio into a second, but it had a nasty little bug!
I forgot to erase the codeplug memory, so the radio
got a bitwise AND of two valid codeplugs.62

A second trip with the USB sniffer shows that
these four blocks were erased, and that the upload
address must be set to zero after the erasure.
0x00000000 0x00010000 0x00020000 0x00030000

Erasing the blocks properly gave me a tool that
correctly reads and writes the radio codeplug!

8.5 Codeplug Format
Now that I could read and write the codeplug mem-
ory of my MD380, I wanted to be able to edit it.
Parts of the codeplug are nice and easy to reverse,
with strings as UTF16L and numbers being either
integers or BCD. Checksums don’t seem to matter,
and I’ve not yet been able to brick my radios by
uploading damaged firmware images.

The Radio Name is stored as a string at 0x20b0,
while the Radio ID Number is an integer at 0x2080.
The intro screen’s text is stored as two strings at
0x2040 and 0x2054.

#s eekto 0x5F80 ;
2 struct {

ul24 c a l l i d ; //DMR Account Number
4 u8 f l a g s ; //c2 pr i va te , no tone

//e1 group , with rx tone
6 char name [3 2] ; //U16L chars

} contac t s [1 0 0 0] ;

61In particular, I used r543 of the old SVN repository, a version from 4 July 2012.
62See PoC‖GTFO 2:5.
63http://chirp.danplanet.com

78

CHIRP,63 a ham radio application for editing
radio codeplugs, has a bitwise library that expects
memory formats to be defined as C structs with base
addresses. By loading a bunch of contacts into my
radio and looking at the resulting structure, it was
easy to rewrite it for CHIRP.

Repeatedly changing the codeplug with the man-
ufacturer’s application, then comparing the hex-
dumps gave me most of the radio’s important fea-
tures. Patience and a few more rounds will give me
the rest of them, and then my CHIRP plugin can be
cleaned up for inclusion.

Unfortunately, not everything of importance ex-
ists within the codeplug. It would be nice to export
the call log or the text messages, but such commands
don’t exist and the messages themselves are nowhere
to be found inside of the codeplug. For that, we’ll
need to break into the firmware.

8.6 Dumping the Bootloader

Now that I had a working codeplug tool, I’d like a
cleartext dump of firmware. Recall from Section 8.2
that forgetting to send the custom command 0x91
0x01 leaves the radio in a state where the beginning
of code memory is returned for every read. This is
an interrupt table!

MD380 Recovery Bootloader Interrupts
0x20001a30 Top of the call stack.
0x08005615 Reset Handler
0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault
0x0800542d MMU Fault
0x0800542f Bus Fault
0x08005431 Usage Fault

From this table and the STM32F405 datasheet,
we know the code flash begins at 0x08000000 and
RAM begins at 0x20000000. Because the firmware
updater only writes to regions at and after 0x0800-
C000, we can guess that the first 48k are a recovery
bootloader, with the region after that holding the
application firmware. As all of the interrupts are
odd, and because the radio uses a Cortex M4 core,
we know that the firmware is composed exclusively
of Thumb (and Thumb2) code, with no old fash-
ioned ARM instructions.

Sure enough, I was able to dump the whole boot-
loader by reading a single page of 0xC000 bytes from
the application mode. This bootloader is the one

used for firmware updates, which can be started
by holding PTT and the unlabeled button above
it when turning on the power switch.64

This trick doesn’t expose enough memory to
dump the application, but it was valuable to me for
two very important reasons. First, this bootloader
gave me some proper code to begin reverse engineer-
ing, instead of just external behavioral observations.
Second, the recovery bootloader contains the keys
and code needed to decrypt an application image,
but to get at that decrypted image, I first had to do
some soldering.

STFM32F405
LQFP100

PA
3

V
S
S

V
D
D

PA
4

PA
5

PA
6

PA
7

P
C
4

P
C
5

P
B
0

P
B
1

P
B
2

P
E
7

P
E
8

P
E
9

P
E
10

P
E
11

P
E
12

P
E
13

P
E
14

P
E
15

P
B
10

P
B
11

V
C
A
P
_1

V
D
D

V
D
D

V
S
S

P
E
1

P
E
0

P
B
9

P
B
8

B
O
O
T
0

P
B
7

P
B
6

P
B
5

P
B
4

P
B
3

P
D
7

P
D
6

P
D
5

P
D
4

P
D
3

P
D
2

P
D
1

P
D
0

P
C
12

P
C
11

P
C
10

P
A
15

P
A
14

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

PE2
PE3
PE4
PE5
PE6
VBAT

PC14
PC15
VSS
VDD
PH0

NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2

VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12

PC13

PH1

10
0

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

8.7 Radio Disassembly (BOOT0 Pin)

As I stress elsewhere, the MD380 has three appli-
cations in it: (1) Tytera’s Radio Application, (2)
Tytera’s Recovery Bootloader, and (3) STMicro’s
Bootloader ROM. The default boot process is for
the Recovery Bootloader to immediately start the
Radio Application unless Push-To-Talk (PTT) and
the button above it are held during boot, in which
case it waits to accept a firmware update. There
is no key sequence to start the STMicro Bootloader
ROM, so a bit of disassembly and soldering is re-
quired.

This ROM contains commands to read and write
all of memory, as well as to begin execution at any
arbitrary address. These commands are initially
locked down, but in Section 8.8, I’ll show how to
get around the restrictions.

64Transfers this large work on Mac but not Linux.

79

80

To open your radio, first remove the battery and
the four Torx screws that are visible from the back
of the device. Then unscrew the antenna and care-
fully pry off the two knob covers. Beneath each knob
and the antenna, there are rings that screw in place
to secure them against the radio case; these should
be moved by turning them counter-clockwise using
a pair of sturdy, dull tweezers.

Once the rings have been removed, the radio’s
main board can be levered up at the bottom of the
radio, then pulled out. Be careful when removing it,
as it is attached with a Zero Insertion Force (ZIF)
connector to the LCD/Keypad board, as well as by
a short connector to the speaker.

The STMicro Bootloader is started by pulling
the BOOT0 pin of the STM32F405 high while
restarting the radio. I did this by soldering a thin
wire to the test pad near that pin, wrapping the
wire around a screw for strain relief, then carefully
feeding it out through the microphone/speaker port.

(An alternate method involves removing
BOOT0’s pull-down resistor, then fly-wiring it to
the pull-up on the PTT button. Thanks to tricky
power management, this causes the radio to boot
normally, but to reboot into the Mask ROM.)

8.8 Bootloader RE

Once I finally had a dump of Tytera’s bootloader,
it was time to reverse engineer it.65

The image is 48K in size and should be loaded to
0x08000000. Additionally, I placed 192K of RAM
at 0x20000000. It’s also handy to create regions for
the I/O banks of the chip, in order to help track
those accesses. (IDA and Radare2 will think that
peripherals are global variables near 0x40000000.)

After wasting a few days exploring the command
set, I had a decent, if imperfect, understanding of
the Tytera Bootloader but did not yet have a clear-
text copy of the application image. Getting a bit
impatient, I decided to patch the bootloader to keep
the device unprotected while loading the application
image using the official tools.

I had to first explore the STM32 Standard Pe-
ripheral Library to find the registers responsible for
locking the chip, then hunt for matching code.

1 /∗ STM32F4xx f l a s h regs from stm32f4xx . h ∗/
#@0x40023c00

3 typedef struct {
__IO uint32_t ACR; // access c t r l 0x00

5 __IO uint32_t KEYR; // key 0x04
__IO uint32_t OPTKEYR; // opt ion key 0x08

7 __IO uint32_t SR; // s t a t u s 0x0C
__IO uint32_t CR; // con t ro l 0x10

9 __IO uint32_t OPTCR; // opt ion c t r l 0x14
__IO uint32_t OPTCR1; // opt ion c t r l 1 0x18

11 } FLASH;

65The MD5 of my image is 721df1f98425b66954da8be58c7e5d55, but you might have a different one in your radio.

81

The way flash protection works is that byte 1
of FLASH->OPTCR (at 0x40023C15) is set to the pro-
tection level. 0xAA is the unprotected state, while
0xCC is the permanent lock. Anything else, such as
0x55, is a sort of temporary lock that allows the
application to be wiped away by the Mask ROM
bootloader, but does not allow the application to be
read out.

Tytera is using this semi-protected mode, so you
can pull the BOOT0 pin of the STM32F4xx chip high
to enter the Mask ROM bootloader.66 This process
is described in Section 8.7.

Sure enough, at 0x08001FB0, I found a function
that’s very much like the example FLASH_OB_RDP-
Config function from stm32f4xx_flash.c. I call
the local variant rdp_lock().

1 /∗ Sets the read p ro t e c t i on l e v e l .
∗ OB_RDP s p e c i f i e s the p ro t e c t i on l e v e l .

3 ∗ AA: No pro t e c t i on .
∗ 55: Read pro t e c t i on memory .

5 ∗ CC: Fu l l ch ip p ro t e c t i on .
∗ WARNING: When enab l ing OB_RDP l e v e l 2

7 ∗ i t ’ s no longer p o s s i b l e to go
∗ back to l e v e l 1 or 0 .

9 ∗/
void FLASH_OB_RDPConfig(uint8_t OB_RDP){

11 FLASH_Status s t a tu s = FLASH_COMPLETE;

13 /∗ Check the parameters ∗/
assert_param (IS_OB_RDP(OB_RDP)) ;

15
s t a tu s = FLASH_WaitForLastOperation () ;

17 i f (s t a tu s == FLASH_COMPLETE)
∗(__IO uint8_t ∗)

19 OPTCR_BYTE1_ADDRESS = OB_RDP;
}

66Confusingly enough, this is the third implementation of DFU for this project! The radio application, the recovery bootloader,
and the ROM bootloader all implement different variants of DFU. Take care not to confuse the them.

82

This function is called from main() with a pa-
rameter of 0x55 in the instruction at 0x080044A8.

0x080044a0 fd f 7a0 fd bl rdp_isnot locked
2 0x080044a4 0028 cmp r0 , 0

,=< 0x080044a6 04d1 bne 0x80044b2
4 | ; Change t h i s immediate from 0x55 to 0xAA

| ; to j a i l b r e a k the boo t l oade r .
6 | 0x080044a8 5520 movs r0 , 0x55

| 0x080044aa fd f 781 fd bl rdp_lock
8 | 0x080044ae fd f78b fd bl rdp_applylock

‘−> 0x080044b2 fd f 776 fd bl 0 x8001fa2
10 0x080044b6 00 f097 f a bl bootloader_pin_test

Patching that instruction to instead send 0xAA
as a parameter prevents the bootloader from lock-
ing the device. (We’re just swapping aa 20 in where
55 20 used to be.)

iMac% d i f f o ld . txt j a i l b r e a k . txt
2 < 00044 a0 fd f7 a0 fd 00 28 04 d1

55 20 fd f7 81 fd fd f7
4 −−−
> 00044a0 fd f7 a0 fd 00 28 04 d1

6 aa 20 fd f7 81 fd fd f7

8.9 Dumping the Application

Once I had a jailbroken version of the recovery boot-
loader, I flashed it to a development board and in-
stalled an encrypted MD380 firmware update using
the official Windows tool. Sure enough, the appli-
cation installed successfully!

After the update was installed, I rebooted the
board into its ROM by holding the BOOT0 pin high.
Since the recovery bootloader has been patched to
leave the chip unlocked, I was free to dump all of
Flash to a file for reverse engineering and patching.

8.10 Reversing the Application

Reverse engineering the application isn’t terribly dif-
ficult, provided a few tricks are employed. In this
section, I’ll share a few; note that all pointers in
this section are specific to Version 2.032, but similar
functionality exists in newer firmware revisions.

At the beginning, the image appears almost en-
tirely without symbols. Not one function or system
call comes with a name, but it’s easy to identify
a few strings and I/O ports. Starting from those,
related functions—those in the same .C source file—
are often located next to one another in memory,
providing hints as to their meaning.

The operating system for the application is an
ARM port of MicroC/OS-II, an embedded real-time
operating system that’s quite well documented in
the book of the same name by Jean J. Labrosse. A
large function at 0x0804429C that calls the operat-
ing system’s OSTaskCreateExt function to make a
baker’s dozen of threads. Each of these conveniently
has a name, conveniently describing the system in-
terrupt, the real-time clock timer, the RF PLL, and
other useful functions.

As I had already reverse engineered most of the
SPI Flash codeplug, it was handy to work backward
from codeplug addresses to identify function behav-
ior. I did this by identifying spiflash_read at
0x0802fd82 and spiflash_write at 0x0802fbea,
then tracing all calls to these functions. Once these
have been identified, finding codeplug functions is
easy. Knowing that the top line of startup text is 32
bytes stored at 0x2040 in the codeplug, finding the
code that prints the text is as simple as looking for
calls to spiflash_read(&foo, 0x2040, 20).

Thanks to the firmware author’s stubborn in-
sistence on 1-indexing, many of the structures in
the codeplug are indexed by an address just be-
fore the real one. For example, the list of ra-
dio channel settings is an array that begins at
0x1ee00, but the functions that access this array
have code along the lines of spiflash_read(&foo,
64*index+0x1edc0, 64).

One mystery that struck me when reverse engi-
neering the codeplug was that I didn’t find a missed
call list or any sent or received text messages. Sure
enough, the firmware shows that text messages are
stored after the end of the 256K image that the radio
exposes to the world.

Code that accesses the C5000 baseband chip can
be reverse engineered in a similar fashion to the
codeplug. The chip’s datasheet67 is very well han-
dled by Google Translate, and plenty of dandy func-
tions can be identified by writes to C5000 registers
of similar functions.

Be careful to note that the C5000 has multiple
memories on its primary SPI bus; if you’re not care-
ful, you’ll confuse the registers, internal RAM, and
the Vocoder buffers. Also note that a lot of registers
are missing from the datasheet; please get in touch
with me if you happen to know what they do.

Finally, it is crucially important to be able to
sort through the DMR packet parsing and construc-
tion routines quickly. For this, I’ve found it handy

67unzip pocorgtfo10.pdf hrc5000.pdf

83

to keep paper printouts of the DMR standard, which
are freely available from ETSI.68 Link-Local ad-
dresses (LLIDs) are 24 bits wide in DMR, and you
can often locate them by searching for code that
masks against 0xFFFFFF.69

8.11 Patching for Promiscuity
While it’s fun to reverse engineer code, it’s all a
bit pointless until we write a nifty patch. Complex
patches can be introduced by hooking function calls,
but let’s start with some useful patches that only re-
quire changing a couple of bits. Let’s enable promis-
cuous receive mode, so the MD380 can receive from
all talk groups on a known repeater and timeslot.

In DMR, audio is sent to either a Public Talk-
group or a Private Contact. These each have a 24-bit
LLID, and they are distinguished by a bit flag else-
where in the packet. For a concrete example, 3172 is
used for the Northeast Regional amateur talkgroup,
while 444 is used for the Bronx TRBO talkgroup. If
an unmodified MD380 is programmed for just 3172,
it won’t decode audio addressed to 444.

There is a function at 0x0803ec86 that takes a
DMR audio header as its first parameter and decides
whether to play the audio or mute it as addressed
to another group or user. I found it by looking for
access to the user’s local address, which is held in
RAM at 0x2001c65c, and the list of LLIDs for in-
coming listen addresses, stored at 0x2001c44c.

To enable promiscuous reception to unknown
talkgroups, the following talkgroup search routine
can be patched to always match on the first el-
ement of listengroup[]. This is accomplished
by changing the instruction at 0x0803ee36 from
0xd1ef (JNE) to 0x46c0 (NOP).

for (i = 0 ; i < 0x20u ; ++i) {
2 i f ((l i s t e ng r oup [i] & 0xFFFFFF)

== dst_l l id_adr) {
4 something = 16 ;

r ecogn i zed_l l id_dst = dst_l l id_adr ;
6 current_l l id_group = var_lgroup [i +16] ;

sub_803EF6C () ;
8 dmr_squelch_thing = 9 ;

i f (∗(v4 + 4) & 0x80)
10 byte_2001D0C0 |= 4u ;

break ;
12 }

}

A similar JNE instruction at 0x0803ef10 can be
replaced with a NOP to enable promiscuous recep-
tion of private calls. Care in real-world patches
should be taken to reduce side effects, such as by
forcing a match only when there’s no correct match,
or by skipping the missed-call logic when promiscu-
ously receiving private calls.

8.12 DMR Scanning
After testing to ensure that my patches worked, I
used Radio Reference to find a few local DMR sta-
tions and write them into a codeplug for my mod-
ified MD380. Soon enough, I was hearing the best
gossip from a university’s radio dispatch.70

Later, I managed to find a DMR network that
used the private calling feature. Sure enough, my
radio would ring as if I were the one being called,
and my missed call list quickly grew beyond my two
local friends with DMR radios.

8.13 A New Bootloader
Unfortunately, the MD380’s application consumes
all but the first 48K of Flash, and that 48K is con-
sumed by the recovery bootloader. Since we neigh-
bors have jailbroken radios with a ROM bootloader
accessible, we might as well wipe the Tytera boot-
loader and replace it with something completely
new, while keeping the application intact.

Luckily, the fine folks at Tytera have made
this easy for us! The application has its own
interrupt table at 0x0800C000, and the RESET
handler—whose address is stored at 0x0800C004—
automatically moved the interrupt table, cleans up
the stack, and performs other necessary chores.

1 //Minimal is t boo t l oader .
void main () {

3 //Function po in t e r to the app l i c a t i on .
void (∗ appmain) () ;

5 //The handler address i s the s to red in the
// i n t e r r up t t a b l e .

7 uint32_t ∗ r e s e thand l e r =
(uint32_t ∗) 0x0800C004 ;

9 // Set the func t i on po in t e r to t ha t va lue .
appmain = (void (∗) ()) ∗ r e s e thand l e r ;

11 //Away we go !
appmain () ;

13 }

68ETSI TS 102 361, Parts 1 to 4.
69In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.
70Two days of scanning presented nothing more interesting than a damaged elevator and an undergrad too drunk to remember

his dorm room keys. Almost gives me some sympathy for those poor bastards who have to listen to wiretaps.

84

8.14 Firmware Distribution

Since this article was written, DD4CR has managed
to free up 200K of the application by gutting the
Chinese font. She also broke the (terrible) update
encryption scheme, so patched or rewritten firmware
can be packaged to work with the official updater
tools from the manufacturer.

Patrick Hickey W7PCH has been playing around
with from-scratch firmware for this platform, built
around the FreeRTOS scheduler. His code is al-
ready linking into the memory that DD4CR freed
up, and it’s only a matter of time before fully-
functional community firmware can be dual-booted
on the MD380.

– — — – — — — — – — –
In this article, you have learned how to jailbreak

your MD380 radio, dump a copy of its application,
and begin patching that application or writing your
own, new application.

Perhaps you will add support for P25, D-Star,
or System Fusion. Perhaps you will write a proper
scanner, to identify unknown stations at a whim.
Perhaps you will make DMR adapter firmware, so
that a desktop could send and receiver DMR frames
in the raw over USB. If you do any of these things,
please tell me about it!

Your neighbor,
Travis

85

D
ATE:

Approve:

C
heck:

of
Page:

R
EV:

M
odel:

Filenam
e:

File N
O

.:

D
esigner:

3
6

PETER

1.0
2014.08.11

R
314

180R

LED303
RED

R
315

220R

LED301
GREEN

Q
301

D
TC

144EE
Q

302
D

TC
144EE

R
316
47K

C
316

103 R
317
47K

C
317

103 R
318
47K

C
318

103 R
319
47K

C
319

103

R
320

0R

R
321

10K

1
EC

1
2

G
1

6
EC

0

7 G0

4
EC

3
5

G
2

3
EC

2

8 G0

SW
302

C
O

D
E-SW

ITC
H

C
320

104

R
362

4K7
R

363
4K7

C
362

104

1
C

SN
2

SO
6

SC
K

5
SI

4
VSS

3
W

PN

7
H

O
LD

N

8
VC

C

U
302

W
25Q

128FVSIG

4
SD

A

3
SC

L

2
G

N
D

5
VPP

1
R

STO

6
VD

D

U
307

H
R

_V3000S

C
307

104

C
305
104

C
306

104

C
308

105

5 PE614 NRST1 PE22 PE33 PE44 PE57 PC13_ANTI_TAMP8 PC14_OSC32_IN9 PC15_OSC32_OUT12 OSC_IN13 OSC_OUT73 VCAP_215 PC016 PC117 PC218 PC320 VREF-23 PA0_WKUP24 PA162 PD1563 PC664 PC765 PC866 PC967 PA8

72
PA13

25
PA2

26
PA3

29
PA4

30
PA5

31
PA6

32
PA7

33
PC

4
34

PC
5

35
PB0

36
PB1

37
PB2

38
PE7

39
PE8

40
PE9

41
PE10

42
PE11

43
PE12

44
PE13

45
PE14

46
PE15

47
PB10

48
PB11

68
PA9

69
PA10

51PB12 52PB13 53PB14 54PB15 55PD8 56PD9 57PD10 58PD11 59PD12 60PD13 61PD14 49VCAP_1 74VSS_2 10VSS_5 27VSS_4 99VSS_3 22VDDA 21VREF+ 19VDD 50VDD_1 11VDD_5 28VDD_4 100VDD_3 75VDD_2 6VBAT

76
PA14

77
PA15

78
PC

10
79

PC
11

80
PC

12
81

PD
0

82
PD

1
83

PD
2

84
PD

3
85

PD
4

86
PD

5
87

PD
6

88
PD

7
89

PB3
90

PB4
91

PB5
92

PB6
93

PB7
94

BO
O

T0
95

PB8
96

PB9
97

PE0
98

PE1
70

PA11
71

PA12

U
301

STM
32F405VG

T6

C
303
8P

C
302
8P

R
313

10K

1

TP301
JTAG

_SW
C

LK

R
306

10K

R
305

N
C

1
TP303
BO

O
T0

C
343

105

C
345

103

R
336

22K

C
332

153 R
335

15K

C
333
183

C
312

103

C
313

103

3
VEE2

2
VEE1

1
N

C

4
O

U
T

5
VC

CU
303

PST9124

R
342

10K
C

338
104C

339
103

R301 1K

R
339
4K7C

335
392

R
338

4K7
C

336
183

R
341

2K2

1

TP305
JTAG

_R
ESET

C
337

105

R
310

10K

R
304
N

C

R
340

22K

1

TP304
JTAG_SWDIO

R
311

1K
R

312
1K

C
352

105

R
303

10K

C
344

105

C360
104

C361
104

R350 NC

R
391
1K

R
370

1K

R334
0R

1
3 X301

8M
H

z

R308 1K

R3091K

C
301

10P

C
304

10P

1
4

2
3

X302
32.768KH

z

D
304

N
C

R
392

1K

R
393

220R

C
340
N

C

Q
303

N
C

R348 1K

R
349

47K
C

341

104

R
352

1K

54321 6 7

FPC
301

PTT_PAD

R
345

10K

R355 100R

R354 100R

R
359

1K
R

358
1K

R
357

1K
R

356
1K

1
H

O
LD

/IO
3

2
VC

C
3

R
ESET#

4
D

N
U

5
D

U
N

6
C

S2#
7

C
S1#

8
SO

/IO
1

9
W

P#/IO
2

10
VSS

11
D

N
U

12
D

N
U

13
N

C
14

VIO
/R

FU
15

SI/IO
0

16
SC

K

U
305

N
C

C
350

N
C

R
364

N
C

R
367

N
C

R
365

N
C

R
366

N
C

R
347
N

C

C
349

N
C

R
360

1K
R

380
1K

R
302
1K

D
305

KD
S160E

BAT301
M

S412F-FL26E

BAT+

3V3

3V3

FLASH
_SD

O

FLASH
_SC

LK

FLASH
_C

S0

FLASH
_SD

I

EC
N

0
EC

N
1

EC
N

2
EC

N
3

R
X_LED

TX_LED

3V3

3V3

BSHIFT

LCD_D1

APC
/TV

M
O

D
2_BIAS

LC
D

_D
4

LC
D

_D
5

VO
X

BU
SY

5RC

U
SB_D

+

LC
D

_R
D

SC
L

3V3
LC

D
_W

R

K1

3V3

VO
L_O

U
T

3V3

SAVE

5TC

EC
N

1
EC

N
2

EC
N

3

EC
N

0

LCD_RS
LCD_RST

LC
D

_D
2

LC
D

_D
3

K2K3

U
SB_D

-

PLL_LD
PLL_CS

LCD_D0

SD
A

DMR_SLEEP

TIME_SLOT_INTER
SYS_INTER

RF_TX_INTER
RF_RX_INTER

Q
T_D

Q
T_IN

R
SSI

LC
D

_D
6

2T/5T/D
TM

F_O
U

T

BATT

LAMP

FM
_SW

C
TC

/D
C

S_O
U

T

PO
W

_C

D
M

R
_SW

VC
O

VC
C

_SW

EXT_PTT

LC
D

_C
S

FLASH
_SC

LK
FLASH

_SD
O

FLASH
_SD

I I2S_FS
I2S_C

K
I2S_R

X
I2S_TX

R
F_APC

_SW

2T/5T

BEEP

W
/N

_SW

C5000_RST

M
IC

PW
R

_SW

32.768K_OUT
32.768K_IN

32.768K_IN

TX_LED

BSH
IFT

32.768K_OUT

DMR_SDO

DMR_CS
DMR_SCLK

DMR_SDI

PTT_KEY
3V3

K3
LC

D
_D

6
LC

D
_D

7

LC
D

_D
7

3V3

PLL_DAT

PLL_CLK

FM
_M

U
TE

V_CS
V_SCLK
V_SDO
V_SDI

FLASH_CS1
FLASH_CS2

SPK_C
AFC

O
R

X_LED

SD
A

SC
L

3V3

3V3

FLASH
_SD

O FLASH
_C

S2
FLASH

_C
S1

FLASH
_SC

LK
FLASH

_SD
I

BAC
K3V3

3V3

PTT_KEY

FLASH
_C

S0

86

C
he

ck
:

Ap
pr

ov
e:

D
AT

E:
of

Pa
ge

:
R

EV
:

M
od

el
:

Fi
le

na
m

e:

Fi
le

 N
O

.:

D
es

ig
ne

r:

2
6

PE
TE

R

1.
0

20
14

.0
8.

11

R
22

6
N

C

R
23

8
1K

R
23

2
10

K

L2
02

BL
M

18
AG

60
1S

C
24

4

22
0P

R
22

7
N

C

R
23

1
10

K

C
24

1
22

0P

R
23

6
1K

1
H

PV
C

C
9

C
D

C
_A

VC
C

12
PL

L_
VD

D
33

66
AD

C
_A

VD
D

33
_Q

67
AD

C
_A

VD
D

33
_I

76
D

AC
_A

VD
D

33
79

D
C

D
C

_V
D

D
33

32
VD

D
12

53
VD

D
12

69
AD

C
_A

VD
D

12
_I

64
AD

C
_A

VD
D

12
_Q

77
D

C
D

C
_V

D
D

12
80

D
C

D
C

_S
W

18
BC

LK
17

LR
C

K
16

M
C

LK
19

AD
C

D
AT

39
R

ES
ET

N
45

D
BI

ST
_I

N
38

TE
ST

_M
O

D
E 21VSS12 33VSS12 52VSS12 3HPGND 13PLL_VSS33 65ADC_AGND_Q 68ADC_AGND_I 73DAC_AVSS33 78DCDC_VSS 41V_SDI 42V_SDO 43V_SCLK 44V_CS 59RF_RX_EN 60RF_TX_EN 61ADC_VBG_Q 14XTAL 15CLKOUT 62ADC_QVINN 63ADC_QVINP

4
C

D
C

_V
R

EF
71

AD
C

_I
VI

N
N

70
AD

C
_I

VI
N

P
34

C
_S

D
I

35
C

_S
D

O
36

C
_S

C
LK

37
C

_C
S

48
TI

M
E_

SL
O

T_
IN

TE
R

49
SY

S_
IN

TE
R

50
R

F_
TX

_I
N

TE
R

51
R

F_
R

X_
IN

TE
R

55
U

_S
D

O
56

U
_S

D
I

57
U

_S
C

LK
58

U
_C

S
2

H
PO

U
T

72
AD

C
_V

BG
_I

10
LI

N
EO

U
T

74
D

AC
_Q

VO
U

T
75

D
AC

_I
VO

U
T

22 MCBSP_RXD23 MCBSP_TXD24 MCBSP_CLKR25 MCBSP_FSX26 MCBSP_CLKX27 MCBSP_FSR28 PKT_RX_WAKE29 RTS30 TX_RDY31 STDBY_ENB47 PWD40 VDD3354 VDD3346 DBIST_OUT20 DACDAT8 MIC1_P5 MIC2_P11 MICBIAS7 MIC1_N6 MIC2_N

U
20

1
H

R
_C

50
00

C
23

3
10

2

C
23

2
10

4

R
22

9
10

R

C
23

5
10

4
C

23
6

10
U

/1
0V

C
22

7

10
3

C
22

8
10

U
/1

0V

C
23

0

10
4

C
22

5
10

4

C
24

0

10
4

C
23

9

10
4

C
22

6
10

4

C
27

9

10
5

C
27

6

10
3

C
27

8

10
3

C
28

0

10
3

C
28

1

10
5

C
28

2

10
3

C
28

3

10
5

C
28

4

10
3

C
26

9

10
5

C
27

0

10
3

C
27

1

10
5

C
27

2

10
3

C
27

4

10
4

C
27

3

10
4

R
24

9
10

0R

R
23

3
10

K
R

23
4

10
K

R
23

5
N

C
C

23
4

N
C

R
22

5
1K

C
22

4
10

5
1

1
2

-V
3

3
4

4

5
+V

U
20

3
TC

75
S5

1F

R
24

0
10

K

R
24

1
22

K

C
24

8
10

2

C
25

0
10

5

R
24

3
22

0K

R
24

4
10

0K

C
25

3
47

0P
C

25
2

10
4

R
25

3
1K

C
23

1
10

P

L2
08

BL
M

18
AG

60
1S

C
24

9
10

5

C
23

8
10

5

C
29

0

10
4

C
29

1

10
U

/1
0V

C
23

7

10
3

C
31

0

10
4

C
31

1

10
4

C
26

1
10

4

R
25

8
10

K

C
26

0
10

3

R
26

7
2K

2

R
26

1
10

R

C
26

8
47

0P

Q
20

1
D

TC
14

4E
E

EC
26

4
10

0u
F/

6.
3V

C
26

3
10

4

1
2L2
01

BL
M

21
PG

22
1S

R
26

5
10

0K

C
26

2
10

4

C
25

7

10
3

C
26

7
10

4

R
25

9
1K

C
26

6

10
5

Q
20

2
FM

M
T7

17

R
26

8
10

R

Q
20

3
D

TC
14

4E
E

C
25

8
10

5

1
O

U
TP

U
T1

2
VC

C

3
O

U
TP

U
T2

4
G

N
D

5
N

F2

6
IN

PU
T2

7
IN

PU
T1

8
N

F1

U
20

4
TD

A2
82

2D

R
26

0
10

R

R
26

6
47

K

R
29

9
N

C

1

2
3

Q
20

4
ST

23
02

1

2
3

Q
20

7
ST

23
02

R
28

0
10

K
C

28
6

10
5

C
28

9

10
3

C
28

7

10
3

C
28

5

10
4

+

EC
25

9
10

uF
/1

0V

+

C265
22U/10V

1
N

C

2
G

N
D

4
VC

C

3
O

U
TX2

01
29

.4
91

2M
H

z

L2
03

47
uH

123

45

SW
40

1
VO

L-
SW

IT
C

H

A3
V3

3V
3

3V
3

AD
C

_I
N

_N

A3
V3

BA
T+

3V
3

3V
3

D
M

R
_V

C
C

VO
L_

O
U

T

V_CS
V_SCLK

V_SDO
V_SDI

2T/5T/DTMF_OUT
MIC_OUT

DMR_SLEEP

D
M

R
_C

S
D

M
R

_S
C

LK
D

M
R

_S
D

I

IF
_O

U
T

VO
L_

O
U

T

M
O

D
2

M
O

D
1

I2
S_

R
X

I2
S_

TX
I2

S_
C

K
I2

S_
FS

D
M

R
_S

D
O

R
F_

R
X_

IN
TE

R
R

F_
TX

_I
N

TE
R

SY
S_

IN
TE

R
TI

M
E_

SL
O

T_
IN

TE
R

PO
W

_S
W

BA
T+

AF
C

O

SP
K_

C

EX
T_

SP
K+

SP
K-

C5000_RST

87

9 Tithe us your Alms of 0day!
by Pastor Manul Laphroaig,

Unlicensed Proselytizer
International Church of the Weird Machines

Howdy, neighbor!
One Sunday, a man and his son were hiking the

Appalachian Trail, when they came upon a small
church in rural New Hampshire. The boy insisted, so
the father begrudgingly attended the morning ser-
vice. Because he forgot to bring cash, the father
fished a dime out of his pocket for the collection
plate.

After the service, when they were walking back
to the woods, the father started griping. “The ser-
mon was too long,” he said, “and the hymns were off
key!”

After the few minutes of silence, the boy spoke
up. “Dad, I think it was pretty good for a dime!”

Do this: write an email telling our editors how to
do reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Do pick on quick, clever trick and explain it in a
few pages. Teach me how to repair Dakarand from
PoC‖GTFO 1:2 and 2:9. Show me a fancy game in
a boot sector, like PoC‖GTFO 3:8. Port the worst
features from Visual Basic to C, like PoC‖GTFO
8:8. Don’t tell me that it’s possible; rather, teach
me how to do it myself with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

88

	anm0:

